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Summary The Arabian Sea, off SW India, is becoming more anoxic in recent years. Poor
ventilation affects microbial degradation of organic matter in the oxygen minimum zone
(�2.85 ml l�1 O2, �0.02 mM NO2) and the anoxic marine zone (�0.09 ml l�1 O2, �0.5 mM
NO2). We posit that one of the reasons at the microbial level could be due to a more prominent
increase in sulfate-reducing activity (SRA), than sulfur-oxidizing activity (SOA). Hence, the
objective was to measure the extent to which SOA can counter the effect of SRA. We, therefore
examined these activities along with relevant environmental variables from 2009 to 2011 off
Kochi (9.558N—75.338E) and Trivandrum (8.268N—76.508E), covering the three phases of upwell-
ing. SRA was measured radiometrically using 35S, and SOA by iodometry. Off Kochi, the SOA of the
water column increased 6� (194—1151 mM d�1) and SRA 4� (13—54 nM d�1) from phase I to III. Off
Trivandrum, the increase in SOA was 1.7� (339—560 mM d�1) and SRA 7� (24—165 nM d�1)
contributing to the build-up of reducing/oxidizing conditions. This increase in SOA moderates
the effect of increase in SRA. Besides, the average concentrations of dissolved oxygen and nitrite
off Trivandrum were 1.80 � 1.66, 1.48 � 1.55, 1.93 � 1.86 ml l�1 and 0.14 � 0.14, 1.69 � 0.67,
0.34 � 0.42 mM during the three phases respectively. Hence, it is suggested that the coastal
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waters examined in this study could probably be between oxygen minimum zone (OMZ) and
anoxic minimum zone (AMZ) in patches temporarily. The present paper highlights the interactions
between sulfate-reducing and sulfur-oxidizing activities, during upwelling for the first time in
these waters. These observations give an important and timely insight into the implications.
© 2019 Institute of Oceanology of the Polish Academy of Sciences. Production and hosting by
Elsevier Sp. z o.o. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the North Indian Ocean, off the south-west coast of India,
the Arabian Sea water experiences seasonal upwelling during
the summer monsoon (May—September). This upwelling phe-
nomenon initiates from Trivandrum (TVM) in the south, and
its strength decreases northward (Shetye et al., 1990). The
process generally comprises of three different phases, i.e.,
the initial (May to June: phase I), middle (July to August:
phase II) and final (August to September: phase III). During
the first phase, primary productivity is at a relatively higher
rate triggered by the nutrients brought to the surface. In the
second phase, the primary production increases, along with
an increase in secondary production. In the third phase, the
processes decline, accompanied by plankton degradation by
microbes mediating different biogeochemical cycles (Walsh
et al., 1999).

While a number of researchers have covered the physical
and chemical aspects influencing the biological parameters
like primary, secondary and tertiary production (Kumar
et al., 2001; Madhupratap et al., 2003; Naqvi, 1991; Shetye
et al., 2015), the important aspect of bacterial contribution
linking different trophic levels and different parameters have
been few. Lately, off TVM and off Kochi, Malik et al. (2015),
observed strong relationships between the variables
mediated by the microbes.

The maintenance of redox conditions of such coastal
systems could depend upon the capacity to oxidize or reduce
a certain amount of organic material without significantly
changing the redox potential. This net condition could result
from several oxidizing and reducing activities prevailing in
the system. The relative increase in the sulfate-reducing
activity over sulfur-oxidizing activity could be one such
important redox cycle that could play a major role in con-
tributing to the lowering of dissolved oxygen and other
electron acceptors like nitrate and the “build-up of reducing
conditions”. It is this accumulation of these reducing condi-
tions/regions coupled with the weak ventilation that could
add to the spread of the oxygen minimum zone (OMZ) in space
and time. During monsoon/upwelling, intense winds tend to
weaken the OMZ in the upper layers by the supply of oxygen
through enhanced ventilation which is greater than oxygen
consumed by remineralization. However, below thermocline
layers (>100 m, Banse et al., 2017), the biological consump-
tion of oxygen exceeds the supply of oxygen by ventilation
which causes intensification and expansion of OMZ on a
decadal scale (Lachkar et al., 2018). In line with these
observations, we have noticed such intensification at the
micro-aerophilic to anaerobic level, which particularly
revolves around the activities of colourless sulfur-oxidizing
(CSOB) and sulfate-reducing bacteria (SRB) and the interac-
tions between them.
Previous studies by Canfield et al. (2010) in the OMZ of
Chilean coast have used the metagenomic approach to study
the cryptic sulfur cycle. Nevertheless, in our studies, the
abundance and activity of pertinent microbial groups were
used to understand the spatiotemporal spread in oxidizing/
reducing conditions in upwelling waters. However, Banse
et al. (2014) stated that 8—128N of Arabian Sea was outside
the suboxic OMZ. Moreover, till 2004, the borders of the OMZ
in the Arabian Sea, extended from 188N to 118N at a depth of
150—400 m (Banse et al., 2017). More importantly, it has
been reported that the Arabian Sea OMZ is weakly dictated by
the seasonal cycle of ocean dynamics and the biogeochem-
istry influenced by the Asian monsoon system of the region.
Also, OMZ of this region is “spatially decorrelated” from the
coastal upwelling systems where biological productivity is
the highest (Resplandy et al., 2012).

However, the participation of microbes and the processes
they mediate need to be quantified to appreciate their
relative influence from the oxic to the sub-oxic state of
the waters. Sulfate-reduction could be an important process
in the anaerobic marine environment (Canfield et al., 2005)
perhaps even in the OMZ. Organic mineralization by SRA in
the marine ecosystem is one of the important terminal
degradative processes in low ambient oxygen concentration.
It is able to degrade >50% organic matter, accumulating
sulfide in the process (Jørgensen and Boetius, 2007). SRB
are ubiquitous and are prevalent under both anaerobic and
aerobic conditions (Bottrell et al., 1991; Fortin et al., 2002;
Gibson, 1990; Winch et al., 2009). Besides, a relatively wide
number of sulfate-reducing bacterial genera have been iden-
tified from the water column of stratified fjords (Teske et al.,
1996). Generally, oxic degradation of organic matter is fol-
lowed by micro-aerobic to anaerobic breakdown. The pre-
dominance of anaerobic bacterial community and their
activity over the aerobic counterparts could contribute to
the intensification of the reducing conditions in the eastern
Arabian Sea (Gonsalves et al., 2011). Besides, SRB and their
activity have been known to propagate in regions rich in
electron donors like sediments and even in surface layers of
euphotic waters (Teske et al., 1996). This is particularly true
for upwelling waters where electron donors are supplied both
physically due to upwelling and biologically by primary and
secondary production.

The colourless sulfur-oxidizing bacteria (CSOB) and their
activity could play a major role in oxidizing reduced sulfur
and restoring the redox balance in the ecosystem (Jørgensen
and Gallardo, 1999; Lavik et al., 2009). SOA could be pro-
minent even in the absence of oxygen, where nitrate could
act as an alternate electron acceptor (Fossing et al., 1995).
Such interactions between sulfate-reducing and sulfur-
oxidizing bacteria have been elucidated but restricted to
the sediments of upwelling regions off Namibia, Peru and
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Chile using lipid biomarkers (Arning et al., 2008; Canfield,
2001). The present study aims to understand the extent of
SRA and SOA in the upwelling waters of the south-west coast
of India. Here, the term reducing activity has been used, in
the context where the rate of increase in sulfate-reducing
activity is more than the rate of increase in sulfur-oxidizing
activity during the three phases of the study.

We posit that one of the explanations for the restoration
of redox balance could be a higher “increase” in sulfur-
oxidizing activity (SOA) when compared to “increase” in
Figure 1 Details of sampling locations off Kochi and Trivandrum, so
phase III (2011) of upwelling.
sulfate-reducing activity (SRA). However, a significantly large
imbalance in which SRA exceeds SOA could lead to the spread
of reducing conditions in time and space. Hence, the activity
and the distribution patterns of bacteria responsible for
these processes were examined along the transects off Kochi
and Trivandrum during the initial, middle and final phases of
upwelling. The present paper highlights the interactions
between sulfate-reducing and sulfur-oxidizing bacterial
abundance and their activities, along with the related
environmental parameters during upwelling.
uthwest coast of India during phase I (2009), phase II (2010) and



Table 1 Details of sampling depths in the southwest coast of
India during phase I (2009), phase II (2010) and phase III (2011)
of upwelling.

Station no. Water depth [m] Sampling depth [m]
Kochi and Trivandrum

1 30 5, 15, 25
2 50a 5, 10, 25, 45
3 100 5, 20, 60, 80, 90
4 200 5, 20, 60, 80, 150, 175
5 500b 5, 20, 60, 80, 150, 300, 450

Total number of samples, n: Phase I (2009) = 25; Phase II (2010)
= 28; Phase III (2011) = 32.
a No sampling during Phase II.
b No sampling during Phase I.

430 A.S. Kamaleson et al./Oceanologia 61 (2019) 427—444
2. Material and methods

2.1. Description of the study sites

Water samples were collected onboard FORV Sagar Sampada,
during cruises #267 (2009), #276 (2010), #289 (2011), along
the transect off Trivandrum and Kochi in the south-eastern
Arabian Sea at 8.268N—76.508E & 9.558N—75.338E (Fig. 1),
during the three phases of upwelling — end-May to end-June
2009, initial phase (phase I), July to mid-August 2010, middle
phase (phase II) and mid-August to mid-September 2011, final
phase (phase III). Hereafter, these samplings would be
referred to as phase I, II and III respectively. Samples were
collected at different depths from six different stations in
each transect (Table 1).

2.2. Sample collection

Water samples were collected using 10 L Niskin bottles fixed
to CTD-rosette system. Bottles were rinsed twice with sam-
ple water before sub-sampling for parameters like dissolved
oxygen (DO), nutrients (nitrate, nitrite, phosphate and sili-
cate), chlorophyll a (Chl a), phaeopigments, total counts (TC)
and total viable counts (TVC) of bacteria, sulfate-reducing
bacteria (SRB) and colourless sulfur-oxidizing bacteria
(CSOB). Experiments were conducted for SRA and SOA and
were incubated onboard.

2.3. Chemical parameters

Dissolved oxygen was measured by Winkler's titrimetric
method (Strickland and Parsons, 1977). Samples were col-
lected in 125 ml glass stoppered bottles without air bubbles
and were immediately fixed with Winkler's reagents. Fixed
samples were stored in the dark for further analyses. DO
samples were analyzed onboard using a dosimeter
(Metrohms785 DMP Titrino). Analyses of nutrients were car-
ried out onboard using a SKALAR auto analyzer (Wurl, 2009).
Chlorophyll a (Chl a) concentrations were determined
(Yentsch and Menzel, 1963) fluorometrically (Turner Designs,
USA). Samples were filtered on GF/F filters (0.7 mm) and the
extraction was done by adding 10 ml of 90% acetone to the
filter and incubating for 24 h in the dark under refrigerated
condition. For phaeopigments, the Chl a, samples were
acidified with 10% HCl just before fluorometric measurement
(Yentsch and Menzel, 1963). Ammonium was estimated
manually by spectrophotometric method (Grasshoff et al.,
1983).

2.4. Bacteriological parameters

The TC of bacteria was determined by acridine orange direct
count (AODC) method using epifluorescence microscopy and
expressed as numbers per litre. Aliquots of 5 ml water sample
in triplicate were each fixed with 250 mL of buffered formalin
(2% final concentration) as described by Hobbie et al.
(1977). TVC was done quantitatively as outlined by Kogure
et al. (1984). In brief, the yeast extract in the incubating
medium allows for an increase in size but the cocktail of
antibiotics used prevented the cell division, thus enabling the
enumeration of enlarged cells. The fixed water samples of
TVC were stained for 5 min with acridine orange (final con-
centration 2%) and filtered through 0.22 mm Millipore black
nucleopore membrane filters. The bacterial cells were
counted by epifluorescence microscope (Nikon Epifluores-
cence Microscope, Model A 80i) and expressed as numbers
per litre.

SRB were enumerated using the most probable number
(MPN) method, with the liquid media supplemented
with 0.5 mM lactate and 0.5 mM acetate as carbon sources
(Hatchikian's medium (1972) modified by LokaBharathi and
Chandramohan (1990)). The samples were inoculated in
screw-capped tubes and incubated at 27 � 28C and were
enumerated after 15—20 days.

Modified Leiske's medium with 10% of the recommended
thiosulfate concentration (0.5 g l�1) was used for the enu-
meration of CSOB by MPN technique (LokaBharathi, 1989 and
references therein). The samples were incubated at 27 � 28C
for 5—7 days and the numbers were expressed as cells l�1.

MPN method used as the target organisms were less in
numbers and difficult to grow on medium containing agar.
This method also helps to measure the number and activity
simultaneously. Though the method selected is used for fast-
growing bacteria on liquid medium, it is also useful for
comparing trends in the distribution of numbers and activity
across samples (LokaBharathi et al., 1988).

2.5. Sulfate-reducing activity

SRA was measured in the terms of rate (SRR) expressed in
nM d�1. The method was described earlier by King (2001) and
was adopted for coastal waters by Lavik et al. (2009). Radio-
active sodium sulfate 300 ml (35SO4

�2, specific activity,
37 kBq from BARC, Mumbai) was injected into a known
volume of sample in gas-tight vials and the activity was
arrested at the end of 72 h by adding 5 ml (5% w/v) zinc
acetate and maintained at 48C until further analysis. At each
station, zinc acetate was added to each tube before the
tracer addition to determine a blank. Radioactivity was
measured using a liquid scintillation counter (Perkin Elmer
Wallace 1409 DSA). SRA was calculated using the equation:

SRAðdpmÞ ¼ H2
35S

35SO4
2�

� �
�32SO4

2�� IDF
T

;
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where SRA is the sulfate-reducing activity, H2
35S the radio-

activity of reduced sulfur in DPM (disintegration per minute),
35SO4

2� the radioactivity of sulfate at the beginning of
incubation, 32SO4

2� the sea water sulfate concentration in
mM SO4

2�, IDF the isotopic discrimination factor = 1.06, and
T is the time of incubation in hours.

The SRA was calculated from the amount of radioactive
sulfate used and was expressed in nM SO4

2� d�1. The SRB
medium contained both lactate and acetate in order to assess
the SRA at the expense of both the major substrates.

2.6. Sulfur-oxidizing activity

The water samples were tested for their ability to oxidize
thiosulfate by measuring the residual concentration of thio-
sulfate, iodimetrically (Hansen, 1973). To 200 ml of sample,
50 ml of diluted sulfuric acid (3 N), and 25 ml of 0.0125 N
iodine solution were added and titrated immediately with
standardized 0.0125 N Na2S2O3�5H2O until most of the iodine
was consumed. A few drops of freshly prepared starch solu-
tion (1%) was added and titrated until the blue colour dis-
appeared. Blanks were estimated as mentioned below. The
method was suitably adopted to estimate MPN and to mea-
sure the sulfur-oxidizing activity. The experimental tubes
were incubated at 27 � 28C for 5—7 days. Uptake of thio-
sulfate was expressed as mM S2O3 d

�1.

Titre value of sea water blank (Avg): A
Titre value of un-inoculated media (Avg): B
Average titre value of sample: S

A�B�1400
Volume of sea water used for titration 100 mlð Þ
¼ B1 thiosulfate measured in mediumð Þ;

A�S�1400
Volume of sea water used for titration 100 mlð Þ
¼ S1 thiosulfate measured in sampleð Þ;

where 1400 = mol. wt. of S2O3 (112 � 0.0125 N � 1000),

B1�S1 ¼ D amount of thiosulfate utilized mg½ �ð Þ
¼ D=112 mol: wt: of S2O3ð Þ

�1000 mg to mgð Þ=incubation in days ¼ D mMd�1 :

The rates of these processes are generally measured in nM
for sulfate reduction (Albert et al., 1995) and mM for thiosulfate
oxidation (Tuttle and Jannasch, 1976; Visscher et al., 1992).
This difference in the activity is attributable to ecological and
technical reasons. While the product of the former (sulfide) is
environmentally toxic to fauna even in low concentrations from
nM to mM, the latter, is relatively benign. Therefore, there is a
3—4 order difference between the two activities. Technically
the methodology for sulfate reduction based on radiometry is
much more sensitive to lower concentrations than the iodo-
metric method for thiosulfate oxidation.

It is, therefore, suggested that the spread of reducing
activity may not be directly based on the stoichiometry but
on the 'actual changes in the rates' of these two activities
over the three different phases of upwelling. It should be
noted that the main focus is on measuring the “relative
increase” in these activities over the three phases.

2.7. Statistical analysis

Biological data was log(x + 1) transformed for statistical
analysis. Correlations between biological and environmental
parameters were determined using Statistica version
6.0. One-way analysis of variance (ANOVA) was performed
on data to find the significant variation between SRA, SOA
from phase I to phase III. The analysis was carried out using
Statistica 6.0 software package.

3. Results

Comparison of transects, parameter wise, off Kochi and TVM,
was performed to reveal how microbial variables especially
SRA/SRB and SOA/CSOB responded to differences in the
physical, chemical and biological forcings. The vertical var-
iations in these parameters were more off Kochi than off
TVM.

3.1. Physico-chemical parameters

Off Kochi, from phase I to phase III, the average values of
physico-chemical parameters like temperature (23.58—
20.318C), pH (7.97—7.56), salinity (35.05—34.77) and DO
concentrations (2.03—1.82 ml l�1) showed decreasing trends
(Table 2) with a dip in the DO concentration in the second
phase of 1.75 ml l�1. The average values of parameters for
the three different phases showed decreasing trends. This
decrease is not statistically significant. However, the water
column averages of some chemical parameters like nitrate,
nitrite and phosphate showed little variation over the study
period. Other chemical parameters like silicate concentra-
tions decreased from 7.64 to 5.08 mM with a dip in the second
phase (0.32 mM), and ammonium concentration showed a
definite increase from 0.07 to 1.51 mM (Table 2, Fig. 2a).

Off TVM, the average values of the parameters from phase I
to phase III, like temperature (21.56—20.698C), pH (7.98—7.50)
and salinity (34.97—34.84), also showed decreasing trends with
little or no statistical significance. The nutrient distribution was
different off TVM, from that off Kochi. Off TVM, nitrite,
phosphate, and silicate did not show any definite trend,
whereas nitrate and ammonium increased 1.3� (15.55—
20.22 mM) and 	7� (0.19—1.31 mM) respectively (Fig. 2b). In
the first phase, the range in the concentration of phosphate
(0.18—2.96 mM), silicate (0.47—28.15 mM), and nitrate (0.02—
37.78 mM) levels were higher off TVM than off Kochi.

Off Kochi, the SRA was not depth dependent, while off
TVM, SRA decreased with depth, i.e. about 10% of the
variation in SRA was negatively influenced by depth
(r = �0.315; r2 � 100 = 10%) in phase I and 13% in phase III.
Off Kochi and TVM the SRB was depth dependent in phase I
and phase III. However, the temperature had a positive
influence of 36% on the distribution of SRB ( p < 0.05) in
phase I off Kochi.

Off TVM, nutrients affect the distribution of CSOB in phase
I, phase III and that of SRB in phase II. Relationship of SRB with



Table 2 Range (bold), average and standard deviation (�) of physico-chemical and biological parameters during the three phases
of upwelling (2009—2011).

Parameters Phase I Phase II Phase III

Kochi Trivandrum Kochi Trivandrum Kochi Trivandrum

Temperature (8C) a13.46—28.88
b23.58 � 4.97

10.90—29.18
21.56 � 4.94

11.30—26.90
23.06 � 4.03

11.25—28.30
20.07 � 5.80

7.26—27.03
20.31 � 5.79

7.13—28.04
20.69 � 6.17

Salinity (%) 34.88—35.61
35.05 � 0.20

34.80—35.30
34.97 � 0.13

34.30—35.60
35.07 � 0.29

34.30—35.20
34.97 � 0.21

33.53—35.21
34.77 � 0.43

34.15—35.15
34.84 � 0.29

pH 7.68—8.30
7.97 � 0.23

7.69—8.50
7.98 � 0.24

7.76—7.93
7.92 � 0.23

7.70—8.26
7.90 � 0.17

7.32—7.85
7.56 � 0.18

7.25—7.78
7.50 � 0.18

Phosphate (mM) 0.16—2.42
1.44 � 0.74

0.18—2.96
1.21 � 0.81

0.35—4.51
1.49 � 1.57

0.85—1.56
1.06 � 0.25

0.23—2.16
1.25 � 0.58

0.30—5.16
1.70 � 0.94

Silicate (mM) 0.29—19.45
7.64 � 5.71

0.47—28.15
7.75 � 7.48

ndl—1.74
0.32 � 0.50

0.07—4.75
1.65 � 1.12

1.07—12.40
5.08 � 2.96

0.71—18.76
5.80 � 4.30

Nitrate (mM) 0.64—33.17
18.20 � 11.26

0.02—37.78
15.55 � 12.62

ndl—15.40
11.36 � 7.37

0.51—17.39
12.56 � 6.14

0.06—36.50
17.55 � 13.37

ndl—40.84
20.22 � 11.99

Nitrite (mM) 0.04—1.96
0.34 � 0.51

ndl—0.68
0.14 � 0.14

0.13—7.0
1.92 � 4.47

1.24—4.25
1.69 � 0.67

ndl—2.15
0.28 � 0.46

ndl—1.39
0.34 � 0.42

Ammonium (mM) ndl—0.14
0.07 � 0.06

ndl—1.23
0.19 � 0.27

0.03—4.59
0.47 � 1.06

0.13—4.59
0.79 � 1.25

0.63—4.79
1.51 � 0.80

0.57—2.75
1.31 � 0.55

Chl a (mg l�1) ndl—2.18
0.67 � 0.70

ndl—1.04
0.34 � 0.33

0.35—17.45
4.97 � 6.28

ndl—3.49
0.63 � 1.03

0.07—15.31
1.96 � 3.19

0.02—1.90
0.65 � 0.58

Phaeopig* (mg l�1) ndl—0.76
0.28 � 0.22

ndl—0.87
0.23 � 0.21

0.80—2.17
1.29 � 0.44

0.02—2.67
0.49 � 0.68

ndl—10.72
1.06 � 2.24

ndl—2.98
0.57 � 0.58

Phaeopig/Chl a 0.01—2.50
1.01 � 0.80

0.15—4.64
1.38 � 1.23

0.05—3.16
2.67 � 9.25

0.44—9.50
2.65 � 2.52

0.01—4.66
1.23 � 1.36

0.12—9.17
1.85 � 2.08

DO (ml l�1) 0.29—4.88
2.03 � 1.70

0.03—4.40
1.80 � 1.66

0.54—4.50
1.75 � 1.73

0.23—4.57
1.48 � 1.55

0.40—5.24
1.82 � 1.73

0.33—5.17
1.93 � 1.86

TC � 108 l�1 8.21—8.73
8.39 � 0.13

8.32—8.91
8.59 � 0.14

8.11—10.58
9.48 � 0.77

8.83—10.17
9.09 � 0.27

0.50—7.12
3.20 � 1.67

0.94—9.56
4.36 � 2.13

TVC � 107 l�1 7.82—8.18
7.97 � 0.11

7.70—8.0
7.84 � 0.09

7.84—9.07
8.50 � 0.32

7.09—8.83
8.44 � 0.41

0.23—4.43
1.72 � 1.03

0.21—6.05
1.98 � 1.51

SRA (nM d�1) 1.37—54.98
13.72 � 14.55

5.87—90.65
23.90 � 30.83

21.08—28.79
26.19 � 2.15

19.24—28.43
22.89 � 2.32

12.76—290.15
54.04 � 71.90

0.71—398.35
165.17 � 155.45

SRB � 104 l�1 0.05—0.91
0.46 � 0.31

0.18—1.50
0.52 � 0.34

0.04—2.20
0.33 � 0.51

0.20—4.0
1.40 � 1.17

0.01—0.90
0.25 � 0.27

0.01—0.96
0.36 � 0.30

SOA (mM d�1) 18.74—568.62
194.25 � 205.84

9.39—601.71
339.29 � 195.37

33.85—729.58
360.19 � 213.43

3.76—793.51
215.10 � 232.67

348.46—1747.44
1151.06 � 365.16

6.45—1728.10
560.93 � 388.60

CSOB � 106 l�1 0.26—1.56
0.72 � 0.45

0.28—1.71
0.83 � 0.34

0.12—1.08
0.46 � 0.23

0.06—0.66
0.34 � 0.19

0.01—0.20
0.10 � 0.05

0.01—0.37
0.15 � 0.09

* Note: ndl, non-detectable limits; DO, dissolved oxygen; Chl a, chlorophyll a; phaeopig, phaeopigment; TC, total counts; TVC, total viable
counts; SRB, sulfate-reducing bacteria; SRA, sulfate-reducing activity; SOA, sulfur-oxidizing activity; CSOB, colourless sulfur-oxidizing
bacteria.
a Range.
b Average and standard deviation.
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ammonium evolved from negative (r = �0.394, p < 0.05) to
positive (r = 0.424, p < 0.05) from phase I to phase III and
synchronized with an increase in phaeopigment from
0.23 mg l�1 in phase I to 0.57 mg l�1 in phase III. The SOA
negatively influenced ambient phosphate (26%, p < 0.01),
silicate (24%, p < 0.01) and nitrate concentrations (18%,
p < 0.05) in phase I. In phase II, SOA positively correlated
with nitrite (r = 0.430, p < 0.05) (Table 3).

Both groups of bacteria were influenced differently with
phosphate. In phase I, off TVM, SOA related negatively with
phosphate (r = �0.506, p < 0.01), while in phase II, SRB
related positively (r = 0.615, p < 0.01). Silicate was influ-
enced positively by SRB (r = 0.446, p < 0.05) in phase II and
negatively by SOA (r = �0.490, p < 0.01) in phase I. However,
SRB showed positive relation with phosphate (r = 0.615,
p < 0.01) and silicate (r = 0.446, p < 0.05) in phase II.

3.2. Biological parameters

Off Kochi, the average Chl a values increased from 0.67 to
1.96 mg l�1 from phase I to phase III. High Chl a values
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Table 3 Significant correlation of sulfate-reducing bacteria (SRB), sulfate-reducing activity (SRA), colourless sulfur-oxidizing
bacteria (CSOB) and sulfur-oxidizing activity (SOA) with various environmental parameters.

Parameters Kochi Trivandrum

Phase I Phase II Phase III Phase I Phase II Phase III

Depth SRB (�0.545*) CSOB (0.589**) SOA (0.524*) SRB (0.782***) SRA (�0.359*)

Temperature SRB (0.593*) — SRB (0.396*) SRB (0.394*), SRA
(0.396*), SOA (0.524*)

— —

Nutrients — CSOB (NO2
� 0.530*) — CSOB (NH4

+ �0.394*),
SOA (PO4

3� �0.506**,
SiO4

4� �0.490**,
NO3

� �0.420*)

SRB (PO4
3�

0.615**, SiO4
4�

0.446*, NO3
�

0.435*), SOA
(NO2

� 0.430*)

CSOB (NH4
+

0.424*, NO2
�

0.417*), SOA
(NO3

� 0.364*)

Chlorophyll a — — SOA (�0.523*) SRB (0.572**), SRA
(0.595**)

SRB (�0.451*) SRA (0.382*)

Phaeopigments — CSOB (0.538*) SOA (�0.549*) SRB (0.539**), SRA
(0.652***)

SRB (�0.442*) —

Note: Values in parenthesis indicate r values (correlation coefficient). Chl a, chlorophyll a; phaeo, phaeopigments; PO4
3�, phosphate;

SiO4
4�, silicate; NH4

+, ammonium; NO2
�, nitrite; NO3

�, nitrate.
* p < 0.05.
** p < 0.01.
*** p < 0.001.
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(4.97 mg l�1) off Kochi in phase II was matched by low silicate
(non-detectable levels (ndl) to 1.74 mM) and nitrate concen-
trations (ndl to 15.4 mM). Consequently, like Chl a, phaeopig-
ments and phaeo/Chl a ratio also showed increasing trends
over the phases from 0.28 to 1.06 mg l�1 and 1.01 to
1.23 mg l�1 respectively (Table 2).

Off TVM, the average Chl a increased from 0.34 mg l�1 in
phase I, to 0.63 mg l�1 in phase II, and to 0.65 mg l�1 in phase
III (Table 2). Like the transect off Kochi, the average phaeo-
pigment concentrations off TVM showed a definite increasing
trend from 0.23 mg l�1 to 0.57 mg l�1 from phase I to phase III.
The phaeopigment/Chl a ratio ranged from 0.15—4.64 in
phase I, 0.44—9.50 in phase II and 0.12—9.17 in phase III.
The whole water column average of phaeo-pigment/Chl a
ratio was 1.38 in phase I, 2.65 in phase II and 1.85 at phase III.

Off TVM, in phase I, SRB and SRA varied positively with Chl a
(r = 0.572, r = 0.595, p < 0.01 respectively). In phase II, SRB
varied negatively with Chl a (r = �0.451, p < 0.05) and in phase
III, it was not influenced. However, in phase III, SRA varied
positively with Chl a (r = 0.382, p < 0.05). In phase I, SRB and
SRA varied positively with phaeopigment (r = 0.539, p < 0.01,
r = 0.652, p < 0.001 respectively). In phase II, SRB varied
negatively with phaeopigment (r = �0.442, p < 0.05), whereas
in phase III, no such relationship was observed with SRB and
SRA. Such relationships were not observed off Kochi (Table 3).

3.3. Microbiological parameters — abundance

Off Kochi, total bacterial counts were in the order of 108 l�1

and did not show significant variation over the period exam-
ined. Similarly, there was no appreciable change in the direct
viable count which was one order less. Off TVM, the total
bacterial abundance and viability was 4.36—8.59 � 108 l�1

and 1.98—7.84 � 107 l�1 respectively.
Off Kochi, the average SRB population showed low varia-
tion from 0.25 � 104 l�1—0.46 � 104 l�1. Off TVM, the range
in SRB abundance was from 102 to 104 l�1. Generally, higher
SRB population was observed in the upwelling waters off
TVM. Off Kochi, CSOB did not show any logarithmic variation
and was in the range of 0.1 � 106 l�1 to 0.72 � 106 l�1. Off
TVM, CSOB populations varied from 0.15 � 106 l�1 to
0.83 � 106 l�1 (Fig. 3a and b, Table 2).

Spearman's correlation analysis showed TC to correlate
with environmental parameters at phase I only off TVM
(depth: r = �0.473, p < 0.05, temperature: r = 0.631, phos-
phate: r = �0.664, silicate: r = 0.609, nitrate: r = �0.696,
ammonium: r = 0.606, Chl a: r = 0.577, phaeo/Chl a:
r = �0.502, p < 0.001).

3.4. Microbiological parameter — activity

There was a general increase in reduction processes over
the phases. Off Kochi, the average SRA increased from
13.72 nM d�1 in phase I, to 26.19 nM d�1 in phase II, and
54.04 nM d�1 during phase III. Off TVM, the average SRA
increased from 23.90 to 165 nM d�1 from phase I to phase
III, with a lower rate of 22.89 nM d�1 in phase II.

Off Kochi, SOA values were 194, 360, 1151 mM d�1, for the
three phases respectively. Comparatively, off TVM low SOA of
339, 215 and 560 mM d�1 was noticed during the three phases
respectively.

Off Kochi, the average water column SRA increased
4 times, and SOA 6� from phase I to III. The increase in
offshore SRA was 5.9� (10.09 nM d�1 to 59.58 nM d�1) over
these phases. Off TVM, the increase in column SRA was 7�
(24 nM d�1 to 165 nM d�1) and SOA was 1.7�. The increase in
offshore SRA was 9� (13.94 nM d�1 to 126.65 nM d�1) over
the phases (Fig. 4).
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Analysis of variance (ANOVA) of the whole column of SRA
and SOA off Kochi and TVM further support our observation on
the differences in the 2 processes between the transects. The
increase in SRA from phase I to phase III is more significant off
TVM ( p < 0.001) than Kochi ( p < 0.03). SOA, on the other
hand, is more significant off Kochi ( p < 0.001) than off TVM
( p < 0.04) (Table 4).

4. Discussion

The results are discussed in the context of physicochemical
parameters off Kochi, and TVM, followed by biological and
microbial parameters. The interaction of geochemical vari-
ables of sulfur bacteria and their activities highlight for the
first time, the contribution of this group to the ecology of the
upwelling system in these waters.
Figure 3 Distributory pattern of sulfate-reducing activity (SRA), su
colourless sulfur-oxidizing bacteria (CSOB) off (a) Kochi and (b) Triv
phase II (2010) and phase III (2011).
The physical oceanographic processes influence the input
of nutrients to the nutrient-impoverished waters of Arabian
Sea (Goes et al., 2005; Wiggert et al., 2002) thus making it
one of the most productive areas (Madhupratap et al., 1996).
The decreasing trends of temperature, pH, DO in both the
transects could be attributed to the different phases of
upwelling which were associated with the different stages
of monsoon. The upwelling is discernible by the presence of
cooler more saline and denser water containing less DO than
the normal waters of the surface layers (Fig. 2a and b).

The differences in the parameters off the two transects
could be attributed to the difference in the upwelling inten-
sity due to the differences in the strength of physical forcing
of upwelling (Shetye et al., 1990).

Off Kochi, the increase in Chl a and phaeopigments at
phase II has been noticed (Fig. 2a). The increase in the range
of phaeopigments, and phaeo/Chl a ratio from phase I to
lfate-reducing bacteria (SRB), sulfur-oxidizing activity (SOA) and
andrum (TVM) in southwest coast of India during phase I (2009),



Figure 3 (Continued).
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phase III suggest that the three phases follow the general
paradigm, where the phytoplankton and zooplankton
increase in succession. The phytoplankton then get intensely
grazed and degraded.

Although TVM is known to be more productive (Gerson
et al., 2014), the Chl a concentration was generally lower
than that off Kochi due to higher grazing activity by meso-
zooplankton. Consequently, the phaeopigment concentra-
tion off TVM was highest (2.98 mg l�1) during phase III and
was distributed throughout the water column. However, the
water column phaeopigment/Chl a ratio, suggest that the
degradation processes were more active in phase II.

4.1. Microbiological parameters — abundance

The abundance of TC and TVC are in the range reported
earlier by Ducklow et al. (2001). The abundance of SRB
ranged from 102 to 104 l�1. Of late, they have been encoun-
tered in the aerobic regions hosting anaerobic microniches
(Colin et al., 2017; Jørgensen and Parkes, 2010; LokaBharathi
and Chandramohan, 1990; Shanks and Reeder, 1993). In the
solar lake, the higher abundance of SRB at 106—7 l�1 was
reported in the oxic surface waters (Teske et al., 1998).
Similarly, Neretin et al. (2007) stated that, the proportion
of SRB to total bacteria was 0.1% in the oxic, 0.8—1.9% in the
suboxic and 1.2—4.7% in the anoxic zone, where SRB popula-
tion ranged from 5 � 105 l�1—6.3 � 105 l�1 in sub-oxic to
anoxic water column of Black Sea. The peak MPN SRB of
2.5 � 109 cells l�1 was estimated in the water column of the
alpine meromictic Gek-Gel Lake at 33 m depth (Karnachuk
et al., 2006). In the present study, the higher abundance of
SRB was in the sub-surface waters and accounted for 0.01% of
total bacterioplankton. Colin et al. (2017) also stated that
SRB thriving in the anoxic sediments may be re-suspended
in the oxic water column and transported through oxic



Figure 4 Times increase in sulfate-reducing activity (SRA) and sulfur-oxidizing activity (SOA) from phase I (2009) to phase III (2011) of
upwelling at nearshore and offshore of Kochi and Trivandrum (TVM).
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marine-influenced waters. Intense interactions among phy-
sical, chemical, and biological processes forming strong gra-
dients of the waters may help re-suspend anaerobes to
survive in the water column and even maintain their meta-
bolism within anoxic micro-niches. More importantly, SRB can
be found in water column either because they have the
enzyme superoxide dismutase (Wu et al., 2017) or they have
anti-oxidative defense systems (Brioukhanov et al., 2010) or
they have the ability to respire oxygen (Cypionka, 2000).
Dolla et al. (2006) also stated that SRB can develop molecular
strategies to remove oxygen or they use oxygen temporarily
for respiration to reduce toxicity.



Table 4 Analysis of variance of sulfate-reducing activity (SRA) and sulfur-oxidizing activity (SOA) during the three phases of
upwelling off Kochi and Trivandrum (TVM).

Station Parameters Source of variation SS df MS F P-value F crit

Kochi SRA: Phase I to Phase III Between groups 13,487.59 1 13,487.59 5.37 0.0286 4.22
Within groups 65,302.40 26 2511.63

SOA: Phase I to Phase III Between groups 6,484,745.00 1 6,484,745.00 66.23 0.0000 4.22
Within groups 2,545,819.00 26 97,916.12

TVM SRA: Phase I to Phase III Between groups 409,652.70 1 409,652.70 39.52 0.0000 4.07
Within groups 435,257.90 42 10,363.28

SOA: Phase I to Phase III Between groups 488,047.70 1 488,047.70 4.55 0.0387 4.07
Within groups 4,501,256.00 42 107,172.80
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While SRB produces sulfide, CSOB can oxidize this toxic
end product to polythionates/thiosulfate and sulfate, both
aerobically in the presence of oxygen or anaerobically in
presence of nitrate (Nelson et al., 2004). Off Kochi and TVM,
CSOB did not show any logarithmic variation and ranged from
0.1 � 106 l�1 to 0.72 � 106 l�1 and 0.15 � 106 l�1 to
0.83 � 106 l�1 respectively (Fig. 3a and b, Table 2). The
free-living marine sulfur oxidizers are abundant in diverse
seawater samples including in dark ocean (Swan et al., 2011)
and they accounted for 45% of the 16S rRNA gene clones
recovered from an OMZ in the South Atlantic and 37% from an
anoxic fjord in British Columbia (Lavik et al., 2009; Walsh
et al., 2009). They are especially abundant in coastal sea-
water. Some of the thiosulfate oxidizers oxidize thiosulfate as
an auxiliary electron donor to tetrathionate. This allows
them to use a greater portion of available organic carbon
for biosynthesis rather than for respiration (Jannasch et al.,
1991). However, knowledge regarding their abundance, dis-
tribution, and ecological role is scarce. Lavik et al. (2009)
also identified groups of sulfur oxidizers in the upwelling
coastal waters of Namibian shelf and reported chemoauto-
trophic bacteria to account for 	20% of the bacterioplankton
in the sulfidic waters. Their abundance in the non-sulfidic and
sulfidic bottom waters was in the range of 106 cells l�1 to
107 cells l�1. Other authors (Arning et al., 2008; Goldhammer
et al., 2010; Sievert et al., 2007) noticed the presence of
chemolithotrophic sulfur-oxidizing bacteria in the upwelling
areas. The present study shows that the culturable sulfur
oxidizers are widely present in upwelling waters, accounting
for 1% of the bacterio-plankton.

A culturable approach was used for the analysis because
the high organic loading in the coastal waters permits rela-
tively high recovery (De Souza et al., 2007). Despite the
inherent caveats, the culturable approach retrieves the
dominant culturable bacterio-plankton communities as
coastal waters have considerable dissolved organic carbon
levels (Simu et al., 2005). Besides, new isolates could add to
the existing bacterial database which is an important
requirement.

4.2. Microbiological parameters — activity

Off Kochi, the SRA values increased over the phases. Off TVM,
SRA increased from phase I to phase III with the dip in phase II
(Table 2). This decrease was associated with high Chl a and
phaeopigment concentrations. The SRA off Kochi and TVM are
comparable to 13 nM d�1 reported by Jørgensen et al. (1991),
and 3.5 nM d�1 by Albert et al. (1995) in the Black Sea water
column and 12 nM d�1 in the OMZ waters of Chilean coast by
Canfield et al. (2010). However, much higher values of
1569 nM d�1 have been reported by Pimenov and Neretin
(2006) in these waters.

SOA values were 194, 360, 1151 mM d�1 off Kochi and 339,
215 and 560 mM d�1 off TVM for the three phases respectively
suggesting more dominant oxidation processes off Kochi. The
sulfur-oxidizing activity was comparable to the north Atlantic
water where 358 mM d�1 was reported by Tuttle and Jannasch
(1976). High values could be due to the contribution from
organic loading from inshore waters that promote both SRA
and SOA. Thomas et al. (2013) stated that coastal waters off
Kochi receive inshore waters and organic load from back-
waters along with more fresh water and nutrients. Perhaps
higher inputs of electron donors could account for higher SOA
off Kochi, especially, in the presence of nitrate (LokaBharathi
et al., 1997).

4.3. Inter-relationship of parameters driving
SRA/SRB and SOA/CSOB

4.3.1. Depth
The SRA off Kochi is not depth dependent, while off TVM, SRA
is negatively influenced by depth in phase I (r = �0.315;
r2 � 100 = 10%) and phase III (13%). These observations sug-
gest that the signature of upwelling had just begun in phase I
and it had dissipated by phase III. However, the SRB off
Kochi and TVM are depth dependent in phase I and phase III.
These observations suggest that the activity gets relatively
more influenced by upwelling than the bacterial abun-
dance. At these stages, the availability of organic
matter (PON: r = 0.820, p < 0.001 and POC: r = 0.633,
p < 0.01 unpublished data by Sam Kamaleson et al., under
review) released during phytoplankton growth and degra-
dation at the surface waters facilitates the distribution and
intensity of SRA than the abundance of SRB. Moreover,
Aluwihare et al. (1997) stated that DOM available in the
ocean's surface was at least twice that in the deep sea.
Besides, a high abundance of SRB has been noticed earlier
by other researchers at the surface in non-upwelling
regions (Cypionka, 2000; LokaBharathi and Chandramohan,
1990; Teske et al., 1998).
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4.3.2. Temperature
The temperature, on the other hand, influenced SRB distri-
bution positively, being responsible for 36% ( p < 0.05) of the
variation in phase I off Kochi. SRA and SOA are also positively
influenced by temperature ( p < 0.05) in phase I off TVM
accounting for 16% and 27% of their variation respectively.
Sokolova (2010) suggested that the optimum temperature for
SRB was in the range of 278C—358C. They also found that the
SRA was 6� higher at mesophilic condition than at psychro-
philic condition.

4.3.3. Nutrients
Off TVM, nutrients affect the distribution of CSOB in phase I
and in phase III and, SRB in phase II. Relationship of ammo-
nium with CSOB evolves from negative to positive from phase
I to phase III. The pigment degradation to form phaeopig-
ments increased from 0.23 mM in phase I to 0.57 mM in phase
III and is accompanied by more ammonium production in
phase III. Perhaps CSOB increases due to the higher rate of
nitrification that could provide nitrate as an electron accep-
tor (Sorokin et al., 2006). The SOA negatively influences
ambient phosphate, silicate and nitrate concentrations in
phase I (Table 3). In phase II, CSOB positively correlated with
nitrite suggesting that the community is capable of nitrate
reduction. Krishnan et al. (2008) have shown that intrinsic
nitrification can feed denitrification in the coastal waters.
Such release has also been noticed by Schutte et al. (2018)
along with nitrate accumulation.

Off TVM, both the groups of bacteria act differently with
phosphate. In phase I, SOA related negatively with phos-
phate, while in phase II, SRB related positively (Table 3).
Anaerobic oxidation of phosphite to phosphate during sulfate
reduction increases soluble phosphate (Schink and Friedrich,
2000). The SRB produce sulfide through SRA which binds with
ambient iron thus releasing the iron-bound phosphate
(Howarth et al., 2011). However, phosphate could be taken
up by CSOB through SOA directly for later use (Glaubitz et al.,
2013).

Off TVM, the significant correlation of silicate with SRB
and negative correlation with SOA suggests its oxidation to
the insoluble state. SRA increases pH during the process and
silica solubility also increases with alkalinity (Meier et al.,
2012).

Sulfur oxidizers are also known to store phosphate intra-
cellularly and use phosphate for sulfide/thiosulfate oxidation
(Goldhammer et al., 2010). In this study also, SRB correlated
with phosphate and silicate, indicating its role in releasing
these nutrients, which CSOB utilize, thus confirming the
synergistic relationship between these two groups.

4.3.4. Chl a and phaeopigments
Off Kochi, high Chl a values are matched by low concentra-
tions of silicate and nitrate (r = �0.709, p < 0.001 and
r = �0.521, p < 0.05) suggesting the uptake of these nutri-
ents for chlorophyll build-up and primary productivity. More-
over, iron limited diatom communities that multiply
generally deplete silicate long before nitrate (Capone and
Hutchins, 2013). The limitation of bio-available iron could be
attributed to the increase in SRA over the three phases.
Sulfide the product of sulfate reduction is known to readily
bind with iron.
The relationships of SRA/SRB with Chl a/phaeopigments
could be incidental and attributed to the effects of upwelling
which could have facilitated the interactions between SRB
and the surface-produced chlorophyll. In phase II, the rela-
tion between SRB and Chl a, phaeopigment was negative due
to limited availability or due to faster uptake of break down
products of the pigments. The influence of Chl a on SRA,
changes from negative to positive from phase II to phase III.
The observation suggests that when upwelling peaks, it
increases the production of pigments and DOC which is turn
stimulates SRA at the surface. It should be also noted that SRA
and SRB are not deterred by the presence of oxygen
(Cypionka, 2000; Sass et al., 2002) especially under DOC/
POC replete conditions in upwelling waters.

Both SRA and SRB relate to Chl a off TVM due to upwelling
linked productivity. Further, anaerobic niches in TSM could
support these bacteria and their activity better. Such an
observation was however restricted to TVM. Further, phaeo-
pigment which covaries with Chl a could also contribute to
this association. Up to 43% of the variation in SRA was due to
phaeopigment off TVM. Phaeopigments form a part of TSM as
evidenced by their inter-relationships. Besides, phaeopig-
ment is a degradative product of Chl a, and is a rich source of
secondary metabolites for SRB and its activity. Hence both
TSM (r = 0.624, p < 0.001) and phaeopigments (r = 0.652,
p < 0.001) influence SRA positively.

On the contrary, the influence of these parameters is
negative to CSOB and its activity as these forms are less
heterotrophic and more autotrophic to mixotrophic (Nelson
et al., 2004). Incidentally, phase I off Kochi was an exception.
Thus, on the whole, chlorophyll a and phaeopigments have a
positive influence on SRB (32%) and SRA (43%) respectively
while, nutrients like nitrate, phosphate and silicate
responded and interacted with CSOB and SOA.

4.4. Microbial interaction — abundance

The interaction of TC with environmental parameters was
obvious off TVM in the initial phase of upwelling, disappeared
in the subsequent phases suggesting disruption of connectiv-
ity over the phases. These interactions of TC show that they
decrease with depth, and covary with phosphate, nitrate and
phaeo/Chl a ratio. However, silicate and ammonium inter-
acted positively being responsible for 36% variation of TC.
Intriguingly, such interactions were not observed in all phases
off Kochi perhaps attributed to higher riverine forcing than
upwelling.

4.5. Reducing activity

In coastal areas, the reducing activity due to hypoxia (oxygen
concentration � 2.8 ml l�1 or 63 mM) has been increasing
(Banse et al., 2014; Middelburg and Levin, 2009). Naqvi et al.
(2010) also stated that the coastal hypoxia has been devel-
oping in the most productive part of the Indian Ocean (Ara-
bian Sea). Moreover, recent studies on the Gulf of Arabian Sea
proved that the dead zone (OMZ) has expanded more than
expected, raising a serious threat on local fisheries and
ecosystems (Queste et al., 2018). As low as 10 mM of oxygen
(0.23 ml l�1) was detected in phase II and 15 mM (0.33 ml l�1)
in phase III off TVM. Understanding how the sulfur cycle
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operates in such an environment is important to predict how
these expanding areas will impact organic matter degrada-
tion. It should be noted that the borders of the OMZ in the
Arabian Sea, south-west coast of India have extended from
188N to 118N as on 2004 (Banse et al., 2017) and have not yet
been known to impinge the waters off Kochi (108N) and
Trivandrum (088N). However, to distinguish low oxygen zones
from true anoxic zones, which are rich in nitrite, the latter
are often referred to as anoxic marine zones (AMZs) by Ulloa
et al. (2012). OMZ waters are characterized by �63 mM of
oxygen and �0.02 mM of nitrite (Banse et al., 2014) and AMZs
are characterized by �2 mM oxygen and �0.5 mM of nitrite
(Ulloa et al., 2012). In the current study, the average oxygen
concentration off TVM was 1.48 � 1.55 ml l�1 and 1.93
� 1.86 ml l�1 in phase II and III respectively. The correspond-
ing minimum oxygen concentrations were 10 mM and 15 mM
respectively. The average nitrite concentrations were 1.69
� 0.67 mM and 0.34 � 0.42 mM in phase II and III respectively.
The minimum nitrite concentration was 1.24 mM in phase II
and it was non-detectable in phase III. Hence, it is suggested
that the coastal waters examined in this study could probably
have a status between OMZ and AMZ in patches intermit-
tently. Noticeably, some pockets of hypoxic conditions
defined by oxygen concentration 	45 mM have also been
encountered off Kochi. However, physicochemical and micro-
biological processes perhaps prevent the spread of hypoxic
pockets over time and space.

The spread of reducing activity off Kochi could be mostly
due to the riverine influence and anthropogenic effects
(Thomas et al., 2013), while off TVM could be more a con-
sequence of upwelling. Here, the SRA gets mitigated both by
stronger physical forcing that carries the water offshore and
by SOA which counters the effect of SRA partially.

Thus, the coastal waters off TVM and Kochi are influenced
by sulfate-reducing and sulfur-oxidizing activities. Preva-
lence of both SRB and CSOB has also been documented in
the Chilean coast by Canfield et al. (2010) and Aldunate et al.
(2018). Though they state that the sulfur cycle was cryptic
with no obvious in situ chemical expression, the metage-
nomic results suggest an active sulfur cycle. Perhaps SOA
counters SRA so effectively with a quick turn over of sulfide
that the sulfur cycle appeared cryptic in those waters (Crowe
et al., 2018).

4.6. Relation between SRA and SOA

Sulfur oxidation is one of the important processes which
occur in most productive upwelling areas (Arning et al.,
2008). Generally, SRA and SOA increase over the three phases
of observation. Wherever the sulfate reduction is prominent,
it is accompanied by sulfur-oxidizing activity (Alsenz et al.,
2015; Arning et al., 2008). Ulloa et al. (2012) also identified
sulfide (dsr), thiosulfate oxidation (sox) and sulfate-reducing
(aprA) genes by metagenomics of Arabian Sea waters. Simi-
larly, in the present study SRA and SOA have been shown to
occur simultaneously except that, the increase in rates are
different in different phases and transects. The increase 	7�
in SRA and 1.7� in SOA, return the redox of the ecosystem
only partially off TVM. Off Kochi, 	6� increase in SOA is more
than the 	4� increase in SRA thus mitigating an increased
effect of SRA (Fig. 4). Further, ANOVA of whole column SRA
and SOA emphasizes that the increase in SRA is more statis-
tically significant ( p < 0.001) off TVM than off Kochi
( p < 0.02) and the increase in SOA is more significant off
Kochi ( p < 0.001) than off TVM ( p < 0.03). Thus, the present
study highlights the importance of SOA. Besides, it is impera-
tive that sulfide/thiosulfate-oxidation proceeds at much
faster rates than sulfate-reduction, as the end product sul-
fide could be detrimental to biotic variables even at low
concentrations. Our studies show that bacterial communities
responsible for sulfur-cycle, shift over the course of the
upwelling season from a sulfate-reduction dominated regime
to a more sulfur-oxidation-dominated system in the later
stage.

5. Conclusion

The self-organization of a system runs through several layers
mainly, primary, secondary and tertiary levels, which have
been well documented. However, the layer below the pri-
mary level that is the microbial layer which is responsible for
the important processes of mineralization and rejuvenation
is hardly chronicled. This is a first attempt to elucidate the
contribution of bacteria of the sulfur cycle at the activity
level in these waters. Thus we have been able to detect a
general temporal increase in oxidizing activity over three
different phases accompanied by general spatial spread
towards offshore. However, due to eutrophication, these
couplings could weaken, and there is a tendency for the
increase and spread of reducing activity. Future observations
beyond upwelling seasons including transects south of 108N
could further enlighten our inference. Our studies reiterate
the ecological rebound and recovery that happens after
upwelling due to bacterial processes.
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