PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 586 |

Tytuł artykułu

Zastosowanie pulsacyjnego światła w technologii żywności: przegląd literatury

Treść / Zawartość

Warianty tytułu

EN
Applications of pulsed light in the food technology: literature review

Języki publikacji

PL

Abstrakty

PL
Celem pracy jest przegląd aktualnego stanu wiedzy oraz przybliżenie technologom żywności możliwości wykorzystania pulsacyjnego światła (PL – ang. pulsed light) w przemyśle spożywczym i naukach o żywności. Technika ta zaliczana jest do nowych, nietermicznych metod przetwarzania żywności. Jej zastosowanie związane jest przede wszystkim z dekontaminacją żywności oraz materiałów opakowaniowych, przy czym technika ta wykazuje działanie głównie powierzchniowe. Znane, choć nieliczne, są także przykłady wykorzystania tej metody w celu modyfikacji właściwości chemicznych żywności. Mechanizm wpływu pulsacyjnego światła na komórki organizmów żywych określa się jako efekt fotochemiczny lub fototermiczny. W przypadku mikroorganizmów PL hamuje lub uniemożliwia replikację materiału genetycznego, prowadząc tym samym do inaktywacji drobnoustrojów.
EN
The aim of this work is to make a literature review and describe the possible applications of pulsed light in the food processing and food sciences. The paper is addressed to food technologist. The utilization of this method is linked first of all to the decontamination of food and food contact materials including packaging materials. Utilization of this technique is linked to the decontamination and food preservation. However, it should be emphasized that effectiveness of the pulsed light treatment is rather superficial and therefore the number of possible applications is limited. In the literature, there are few examples of non-preservative utilizations of pulsed light, for instance to stimulate the production of bioactive compounds for e.g. vitamin D or polyphenols. Thus, beside of food shelf-life extension, this technique can be used to shape and improve the quality of food. The mechanism of the influence of the pulsed light is described as photochemical or photothermal. In the case of microorganisms it prevents the replication of a DNA and in consequence inhibits the microbial growth. In the case of plant tissue the exposing the material on the PL is linked with photooxidative stress which can modify the production of the secondary metabolites. Increasing growth of both consumer needs and knowledge and modification of their lifestyle prompt the changes on the food market. Moreover, the environmental issues play more and more important role also in the branch of food production. Pulsed light, because of the fact, that it does not require any solvent or chemical to be active fits very well into the sustainable development concept. For the food producers, not without significance is also a fact that pulsed light can be applied in continues processes and the modification of the processing line is not so complicated. However, in the case of PL implementation the economical matter need to be covered before the final decision. Moreover, even if pulsed light acts superficially it can be combined with other emerging techniques or with edible coatings in order to achieve certain technological aims. All of aforementioned indicate that pulsed light can be considered as a valuable tool for food and food contact material processing.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

586

Opis fizyczny

s.79-88,rys.,tab.,bibliogr.

Twórcy

autor
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Warszawa
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Warszawa
autor
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Warszawa
autor
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Warszawa
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Warszawa

Bibliografia

  • Adamczyk G., 2010. Popularność „żywności wygodnej”. J. Agribus. Rural Dev. 4(18), 5–13.
  • Ade-Omowaye B.I.O., Rastogi N.K., Angersbach A., Knorr D., 2003. Combined effect of pulsed electric field pre-treatment and partial osmotic dehydration on air drying behaviour of red bell pepper. J. Food Eng. 60, 89–98.
  • Artes F., Allende A., 2005. Processing lines and alternative preservation techniques to prolong the shelf-life of minimally processed leafy vegetables. Eur. J. Hortic. Sci. 70, 231–245.
  • Barbosa-Canovas G.V., Schaffner D.W., Pierson M.D., Zhang Q.H., 2000. Pulsed light technology. J. Food Sci. 65(8), 82–85.
  • Bialka K.L., Demirci A., 2008. Efficacy of pulsed UV-light for the decontamination of Escherichia coli O157:H7 and Salmonella spp. on raspberries and strawberries. J. Food Sci. 73(5), 201–207.
  • Cardello A.V., 2003. Consumer concerns and expectations about novel food processing technologies: effects on product liking. Appetite 40(3), 217–233.
  • Char C., Guerrero S., Alzamora S.M., 2009. Survival of Listeria in thermally processed orange juice as affected by vanillin addition. Food Control. 20, 67–74.
  • Charles F., Vidal V., Olive F., Filgueiras H., Sallanon H., 2013. Pulsed light treatment as new method to maintain physical and nutritional quality of fresh-cut mangoes. Innov. Food Sci. Emerg. 18, 190–195.
  • Choi M., Cheigh C., Jeong E., Shin J., Chung M., 2010. Nonthermal sterilization of Listeria monocytogenes in infant foods by intense pulsed-light treatment. J. Food Eng. 97, 504–509.
  • Duarte-Molina F., Gomez P.L., Agueda Castro M., Alzamora S.M., 2016. Storage quality of strawberry fruit treated by pulsed light: Fungal decay, water loss and mechanical properties. Innov. Food Sci. Emerg. 34, 267–274.
  • Elmnasser N., Guillou S., Leroi F., Orange N., Bakhrouf A., Federighi M., 2007. Pulsed-light system as a novel food decontamination technology: a review. Can. J. Microbiol. 53(7), 813–821.
  • Fernández M., Hospital X.F., Arias K., Hierro E., 2016. Application of pulsed light to sliced cheese: Effect on Listeria inactivation, sensory quality and volatile profile. Food Bioprocess Tech. DOI 10.1007/s11947-016-1721-2 [w druku].
  • Fernández M., Manzano S., De la Hoz L., Ordóńez J.A., Hierro E., 2009. Pulsed light inactivation of Listeria monocytogenes through different plastic films. Foodborne Pathog. Dis. 6, 1265–1267.
  • Fine F., Gervais P., 2004. Efficiency of pulsed UV light for microbial decontamination of food powders. J. Food Prot. 67(4), 787–792.
  • Ganan M., Hierro E., Hospital X.F., Barroso E., Fernández M., 2013. Use of pulsed light to increase the safety of ready-to-eat cured meat products. Food Control 32, 512–517.
  • Gomez P.L., García-Loredo A., Nieto A., Salvatori D. M., Guerrero S., Alzamora S.M., 2012b. Effect of pulsed light combined with an antibrowning pretreatment on quality of fresh cut apple. Innov. Food Sci. Emerg. 16, 102–112.
  • Gomez P.L., Salvatori D.M., Garcia-Loredo A., Alzamora S.M., 2012a. Pulsed light treatment of cut apple: dose effect on color, structure, and microbiological stability. Food Bioprocess Tech. 5, 2311–2322.
  • Gomez-Lopez V.M., Devlieghere F., Bonduelle V., Debevere J., 2005. Intense light pulses decontamination of minimally processed vegetables and their shelf-life. Int. J. Food Microbiol. 103(1), 79–89.
  • Gomez-Lopez V.M., Ragaert P., Debevere J., Devlieghere F., 2007. Pulsed light for food decontamination: a review. Trends Food Sci. Tech. 18, 464–473.
  • Hierro E., Ganan M., Barroso E., Fernández M., 2012. Pulsed light treatment for the inactivation of selected pathogens and the shelf-life extension of beef and tuna carpaccio. Int. J. Food Microbiol. 158, 42–48.
  • Jun S., Irudayaraj J., Demirci A., Geiser D., 2003. Pulsed UV-light treatment of corn meal for inactivation of Aspergillus niger spores. Int. J. Food Sci. Technol. 38, 883–888.
  • Knorr D., Zenker M., Heinz V., Lee D., 2004. Applications and potential of ultrasonics in food processing. Trends Food Sci. Tech. 15, 261–266.
  • Krishnamurthy K., Demirci A., Irudayaraj J., 2004. Inactivation of Staphylococcus aureus by pulsed UV-light sterilization. J. Food Protect. 67(5), 1027–1030.
  • Marquenie D., Geeraerd A.H., Lammertyn J., Soontjens C., Van Impe J.F., Michiels C.W., Nicolaý B.M., 2003. Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. Int. J. Food Microbiol. 85, 185–196.
  • Mazzotta A.S., 2001. Thermal inactivation of stationary-phase and acid-adapted Escherichia coli O157:H7, Salmonella and Listeria monocytogenes in fruit juices. J. Food Protect. 64, 315–320.
  • Misra N.N., Tiwari B.K., Raghavarao K.S.M. S., Cullen P.J., 2011. Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev., 3, 159–170.
  • Noriega E., Gilbert S., Laca A., Diaz M., Kong M.G., 2011. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiol. 28, 1293–1300.
  • Nowacka M., Wiktor A., Śledź M., Jurek N., Witrowa-Rajchert D., 2012. Drying of ultrasound pretreated apple and its selected physical properties. J. Food Eng., 113(2), 427–433.
  • Oms-Oliu G., Martin-Belloso O., Soliva-Fortuny R., 2010. Pulsed light treatments for food preservation. A review. Food Bioprocess Tech. 3, 13–23.
  • Ozer N.P., Demirci A., 2006. Inactivation of Escherichia coli O157: H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. Int. J. Food Sci. Tech. 41(4), 354–360.
  • Pataro G., Muńoz A., Palgan I., Noci F., Ferrari G., Lyng J.G., 2011. Bacterial inactivation in fruit juices using a continuous flow Pulsed Light (PL) system. Food Res. Int. 44, 1642–1648.
  • Pietrzak D., 2010. Perspektywy stosowania wysokich ciśnień w produkcji żywności wygodnej z mięsa drobiowego. ŻNTJ 69, 16–28.
  • Popek S., 2014. Ocena wpływu procesu utrwalania na determinanty jakości soków owocowych. Zeszyty Naukowe UEK 3(927), 33–41.
  • Rajkovic A., Tomasevic I., Smigic N., Uyttendaele M., Radovanovic R., Devlieghere F., 2010. Pulsed UV light as an intervention strategy against Listeria monocytogenes and Escherichia coli O157:H7 on the surface of a meat slicing knife. J. Food Eng. 100, 446–451.
  • Ramos-Villarroel A.Y., Martín-Belloso O., Soliva-Fortuny R., 2015. Combined effects of malic acid dip and pulsed light treatments on the inactivation of Listeria innocua and Escherichia coli on fresh-cut produce. Food Control. 52, 112–118.
  • Rodov V., Vinokur Y., Horev B., 2012. Brief postharvest exposure to pulsed light stimulates coloration and anthocyan in accumulation in fig fruit (Ficus carica L.). Postharvest Biol. Tec. 68, 43–46.
  • Shin J.K., Lee S.J., Cho H.Y., Pyun Y.R., Lee J.H., Chung M.S., 2010. Germination and subsequent inactivation of Bacillus subtilis spores by pulsed electric field treatment. J. Food Process. Pres. 43, 43–54.
  • Shynkaryk M.V., Lebovka N.I., Vorobiev E., 2008. Pulsed electric field and temperature effects on drying and rehydration of red beetroots. Drying Technol. 26, 696–704.
  • Sundar R.K., Jeong, S.C., Song, C.H., Cho, K.Y., Pang G., 2009. Vitamin D2 formation and bioavailability from Agaricus bisporus button mushrooms treated with Ultraviolet Irradiation. J. Agr. Food Chem. 57, 3351–3355.
  • Takeshita K., Sibato J., Sameshima T., Fukunaga S., Isobe S., Arihara K., Itoh M., 2003. Damage of yeast cells induced by pulsed light irradiation. Int. J. Food Microbiol. 85, 151–158.
  • Turtoi M., Nicolau A., 2007. Intense light pulse treatment as alternative method for mould spores destruction on paper–polyethylene packaging material. J. Food Eng. 83, 47–53.
  • Verbeke W., Vanhonacke F., Sioen I., Van Camp J., De Henauw S., 2007. Perceived importance of sustainability and ethics related to fish: a consumer behavior perspective. Ambio 36, 580–585.
  • Wiktor A., Śledź M., Nowacka M., Witrowa-Rajchert D., 2013. Możliwości zastosowania niskotemperaturowej plazmy w technologii żywności. ŻNTJ 20(5), 5–14.
  • Yucel U., Alpas H., Bayindirli A., 2010. Evaluation of high pressure treatment for enhancing the drying rates of carrot, apple and green bean. Postharvest Biol. Tec. 98, 266–272.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-963ecce9-17de-4d36-b86b-abba2ec6c3d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.