Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 4 |

Tytuł artykułu

Influence of the entrapment of catechol 2,3-dioxygenase in kappa-carrageenan on its properties

Warianty tytułu

Języki publikacji



Microbial extradiol dioxygenases have a great potential in bioremediation, but their structure is very sensitive to various environmental and chemical agents. Immobilization techniques make the enzyme properties’ improvement possible. This is the first report of the usage of κ-carrageenan as a matrix for the immobilization of catechol 2,3-dioxygenase. The storage stability of entrapped catechol 2,3-dioxygenase from Stenotrophomonas maltophilia KB2 in κ-carrageenan hydrogel at 4ºC was found up to 14 days, while the free enzyme lost its activity within 24 hours. The immobilization of dioxygenase decreased the optimum temperature by 10ºC, while both soluble and immobilized enzyme showed similar pH properties. The Km, Vmax, and Hill constant values for the immobilized enzyme were 0.17 μM, 106.68 mU, and 1.00, respectively. The immobilized catechol 2,3-dioxygenase showed higher activity against 3-methylcatechol, hydroquinone, and tetrachlorohydroquinone than the soluble enzyme. Immobilization of catechol 2,3-dioxygenase protected the enzyme from inhibition and enhanced its resistance to inactivation during catalysis.








Opis fizyczny



  • Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
  • Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
  • Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland


  • 1. WOJCIESZYŃSKA D., HUPERT-KOCUREK K., GREŃ I., GUZIK U. High activity catechol 2,3-dioxygenase from the cresols-degrading Stenotrophomonas maltophilia strain KB2. Int. Biodeter. Biodegr. 65, 853, 2011.
  • 2. QUE L., WIDOM J., CRAWFORD R. L. 3,4- Dihydroxyphenylacetate 2,3-dioxygenase. A manganese (II) dioxygenase from Bacillus brevis. J. Biol. Chem. 256, 10941, 1981.
  • 3. BERTINI I., BRIGANTI F., SCOZZAFAVA A. Aliphatic and aromatic inhibitors binding to the active site of catechol 2,3-dioxygenase from Pseudomonas putida mt-2. FEBS Lett. 242, 56, 1994.
  • 4. KASCHABEK S. R., KASBERG T., MULLER D., MARS A. E., JANSSEN D. B., REINEKE W. Degradation of chloroaromatics: purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31. J. Bacteriol. 180, 296, 1998.
  • 5. MILO R. E., DUFFNER F. M., MULLER R. Catechol 2,3- dioxygenase from the thermophilic, phenol-degrading Bacillus thermoleovorans strain A2 has unexpected low thermal stability. Extremophiles 3, 185, 1999.
  • 6. PALANIANDAVAR M., MAYILMURUGAN R. Mononuclear nan-heme iron (III) complexes as functional models for catechol dioxygenases. CR Chimie 10, 366, 2007.
  • 7. HASSETT D. J., OCHSNER U. A., GROCE S. L., MA J.- F., LIPSCOMB J. D. Hydrogen peroxide sensitivity of cate- chol 2,3-dioxygenase: a cautionary note on use of xylE reporter fusions under aerobic conditions. Appl. Environ. Microbiol. 66, 4119, 2000.
  • 8. BRIGANTI F., PESSIONE E., GIUNTA C., MAZZOLI R., SCOZZAFAVA A. Purification and catalytic properties of two catechol 1,2-dioxygenase isozymes from benzoate- grown cells of Acinetobacter radioresisten. J. Protein. Chem. 19, 709, 2000.
  • 9. TÜMTÜRK H., KARACA N., DEMIREL G., SAHIN F. Preparation and application of poly(N,N-dimethylacry- lamide-co-acrylamide) and poly(N-isopropylacrylamide-co- acrylamide)/K-Carrageenan hydrogels for immobilization of lipase. Int. J. Biol. Macromol. 40, 281, 2007.
  • 10. SHAFEI M. S., ALLAM R. F. Production and immobiliza­tion of partially purified lipase from Penicillium chryso- genum. Malays. J. Microbiol. 6, 196, 2010.
  • 11. BELYAEVA E., VALLE D. D., PONCELET D. Immobilization of a-chymotrypsin in K-carrageenan beads prepared with the static mixer. Enzyme Microb. Technol. 34, 108, 2004.
  • 12. NOBRE T. M., DE SOUSA E SILVA H., FURRIEL R. P. M., LEONE F. A., MIRANDA P. B., ZANIQUELLI M. E. D. Molecular view of the interaction between i-carrageenan and a phospholipid film and its role in enzyme immobiliza­tion. J. Phys. Chem. 113, 7491, 2009.
  • 13. GIRIGOWDA K., MULIMANI V. H. Hydrolysis of galac- to-oligosaccharides in soymilk by K-carrageenan-entrapped a-galactosidase from Aspergillus oryzae. World J. Microbiol. Biotechnol. 22, 437, 2006.
  • 14. IWAKI M., NOZAKI M. Immobilization of metapyrocate- chase and its properties in comparison with the soluble enzyme. J. Biochem. 91, 1549, 1982.
  • 15. FERNANDEZ-LAFUENTE R., GUISAN J. M., ALI S., COWAN D. Immobilization of functionally unstable cate- chol 2,3-dioxygenase greatly improves operational stability. Enzyme Microb. Technol. 26, 568, 2000.
  • 16. WOJCIESZYŃSKA D., HUPERT-KOCUREK K., JANKOWSKA A., GUZIK U. Properties of catechol 2,3- dioxygenase from crude extract of Stenotrophomonas mal­tophilia strain KB2 immobilized in calcium alginate hydro­gels. Biochem. Eng. J. 66, 1, 2012.
  • 17. WOJCIESZYŃSKA D., GUZIK U., GREŃ I., PERKOSZ M., HUPERT-KOCUREK K. Induction of aromatic ring - cleavage dioxygenases in Stenotrophomonas maltophilia strain KB2 in cometabolic systems. World J. Microbiol. Biotechnol. 27, 805, 2011.
  • 18. BRADFORD M. M. A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248, 1976.
  • 19. BAYLY R. C., DAGLEY S., GIBSON D. T. The metabo­lism of cresols by species of Pseudomonas. Biochem. J. 101, 293, 1966.
  • 20. HORVATH R. S. Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase. Biochem. J. 119, 871, 1970.
  • 21. HEISS G., MULLER C., ALTENBUCHNER J., STOLZ A. Analysis of a new dimeric extradiol dioxygenase from a naph- thalenesulfonate-degrading sphingomonad. Microbiology 143, 1691, 1997.
  • 22. SPAIN J. C., GIBSON D. T. Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl. Environ. Microbiol. 57, 812, 1991.
  • 23. KOLVENBACH B. A., LENZ M., BENDORF D., RAPP E., FOUSEK J., VLCEK C., SCHAFFER A., GABRIEL F. L. P., KOHLER H.-P. E., CORVINI P. F. X. Purification and characterization of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3. AMB Express 1, 1, 2011.
  • 24. MATEO C., PALOMO J. M., FERNANDEZ-LORENTE G., GUISAN J. M., FERNENDEZ-LAFUENTE R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40, 1451, 2007.
  • 25. WALLIS M. G., CHAPMAN S. K. Isolation and partial characterization of an extradiol non- haem iron dioxygenase which preferentially cleaves 3-methylcatechol. Biochem. J. 266, 605, 1990.
  • 26. HOLLENDER J., HOPP J., DOTT W. Cooxidation of chloro- and methylphenols by Alcaligenes xylosoxidans JH1. World J. Microbiol. Biotechnol. 16, 445, 2000.
  • 27. HO K. L., CHEN Y. Y., LEE D. J. Functional consortia for cresol- degrading activated sludge: toxicity-to-extinction approach. Bioresource Technol. 101, 9000, 2010.
  • 28. KARA F., DEMIREL G., TÜMTÜRK H. Immobilization of urease by using chitosan-alginate and poly(acrylamide-co- acrylic acid)/K-carrageenan supports. Bioprocess Biosyst. Eng. 29, 207, 2006.
  • 29. DHULSTER P., BARBOTIN J. N., THOMAS D. Culture and bioconversion use of plasmid-harboring strain of immobilized E. coli. Appl. Microbiol. Biotechnol. 20, 87, 1984.
  • 30. JUNCA H., PLUMEIER I., HECHT H. J., PIEPER D. H. Difference in kinetic behavior of catechol 2,3-dioxygenase variants from a polluted environment. Microbiology 150, 4181, 2004.
  • 31. TAKEO M., NISHIMURA M., SHIRAI M., TAKAHASHI H., KITAMURA C. H., NEGORO S. Purification and char­acterization of catechol 2,3-dioxygenase from aniline degra­dation pathway of Acinetobacter sp. YAA and its mutant enzyme, which resists substrate inhibition. J. Bioscen. Bioeng. 71, 1668, 2007.
  • 32. KITA A., KITA S., FUJISAWA I., INAKA K., ISHIDA T., HORIIKE K., NOZAKI M., MIKI K. An archetypical extra-diol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonasputida mt-2. Structure 7, 25, 1999.
  • 33. HUANG Q., SHINDO H. Effects of cooper on the activity and kinetics of free and immobilized acid phosphatase. Soil Biol. Biochem. 32, 1885, 2000.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.