PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | 74 | 4 |

Tytuł artykułu

Influence of Inula helenium rhizomes and Matricaria chamomilla inflorescences on the biochemical and physiological parameters in male rats fed a high-fat diet

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Pharmacological correction of a high-fat diet is of great interest to prevent the development of obesity and hypertension. More and more research is being done on the preventive use of medicinal herbs for excess caloric intake. Objective. The aim of this study was to determine the general physiological effect of I. helenium rhizomes and M. chamomilla inflorescences used in the diet of male rats consuming excess amounts of fat and calories in the daily diet. Material and methods. In a 30-day experiment, we determined the effect of I. helenium rhizome and M. chamomilla on the physiological activity and metabolic processes of laboratory rats consuming a high-fat diet. The physical activity was evaluated according to the mass gain of animals and change in the relative mass of the internal organs, and also the functional conditions of the central nervous system. The influence on the metabolic processes was revealed by biochemical and clinical blood analyses. Results. In a laboratory experiment on male rats, it was found that the addition of dry crushed rhizomes of Inula helenium L. and inflorescences of Matricaria chamomilla L. to the diet caused opposite changes in body weight. In the control group, the animals slightly increased their body weight (up to 111.5% of the initial weight by the end of the experiment); the rhizomes of I. helenium caused a decrease in body weight gain (up to 105.5% on the 30th day of the experiment compared to the initial weight); rats fed M. chamomilla inflorescences gained 123.2% of their initial body weight during the month of the experiment. The rhizomes of I. helenium caused an increase in the stomach relative mass. A decrease in the thymus relative weight was observed when animals were fed M. chamomilla inflorescences. The rhizomes of I. helenium stimulated an increase of blood protein concentration (mainly due to globulins), an increase in the alkaline phosphatase activity and cholesterol, and a decrease in the triglycerides concentration. M. chamomilla inflorescences reduced the blood urea concentration and increased the activity of alkaline phosphatase, causing strong changes in fat metabolism. Under the influence of the diet with the addition of M. chamomilla inflorescences, the atherogenic index increased in animals by 6.5 times relatively to the control group (due to a decrease in the concentration of high-density lipoprotein cholesterol and an increase in the concentration of low-density lipoprotein cholesterol, an increase in the total cholesterol concentration). When M. chamomilla was added to the diet, the blood triglycerides concentration in animals decreased sharply and the concentration of leukocytes increased. The concentration of monocytes exceeded the limits of the physiological norm both in the control group and in the group of animals fed on M. chamomilla inflorescences. Conclusions. The results of the studies show the promise for further research of I. helenium rhizomes in the prevention of hypertension and also indicate strong risks when using M. chamomilla inflorescences for preventive purposes during high-fat and hypercaloric diet.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

74

Numer

4

Opis fizyczny

p.447-458,fig.,ref.

Twórcy

  • Dnipro State Agrarian and Economic University, Serhii Efremov st., 25, Dnipro, 49600, Ukraine
autor
  • Dnipro State Agrarian and Economic University, Serhii Efremov st., 25, Dnipro, 49600, Ukraine
  • Dnipro State Agrarian and Economic University, Serhii Efremov st., 25, Dnipro, 49600, Ukraine
  • Oles Honchar Dnipro National University, Dnipro, Ukraine

Bibliografia

  • 1. Abolfathi M. E., Tabeidian S. A., Foroozandeh Shahraki A. D., Tabatabaei S. N., Habibian M.: Effects of ethanol extract of elecampane (Inula helenium L.) rhizome on growth performance, diet digestibility, gut health, and antioxidant status in broiler chickens. Livestock Science 2019;223:68–75. http://doi.org/10.1016/j.livsci.2019.03.006.
  • 2. Abolfathi M.-E., Tabeidian S. A., Foroozandeh Shahraki A. D., Tabatabaei S. N., Habibian, M.: Comparative effects of n-hexane and methanol extracts of elecampane (Inula helenium L.) rhizome on growth performance, carcass traits, feed digestibility, intestinal antioxidant status and ileal microbiota in broiler chickens. Archives of Animal Nutrition 2019;73(2):88–110. http://doi.org/10.1080/1745039x.2019.1581027.
  • 3. Ahmad B., Gamallat Y., Su P., Husain A., Rehman A. U., Zaky M. Y., Bakheet A. M. H., Tahir N., Xin Y., Liang W.: Alantolactone induces apoptosis in THP‐1 cells through STAT3, survivin inhibition, and intrinsic apoptosis pathway. Chemical Biology and Drug Design 2020;97(2):266–272. http://doi.org/10.1111/cbdd.13778.
  • 4. Alsaadi S.A.R.A., Al-Perkhdri A.S.A., Al-Hadeedy I.Y.H.: Effects of Matricaria chamomilla flower aqueous extract on some hematological, biochemical parameters and carcass traits in Iraqi local rabbits. Plant Archives 2020;20:1044–1049.
  • 5. Alanazi S. M., Alsaqer R. A., Alsaeed F. I., Almakhaytah R. M., Buwashl N. T., Mohamed M. E., Younis N. S.: Studying the actions of sage and thymoquinone combination on metabolic syndrome induced by highfat diet in rats. European Review for Medical and Pharmacological Sciences 2023;27(6):2404–2418.
  • 6. Avallone R., Zanoli P., Puia G., Kleinschnitz M., Schreier P., Baraldi M.: Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochemical Pharmacology 2000;59(11):1387–1394. https://doi.org/10.1016/s0006-2952(00)00264-1.
  • 7. Bravo-Ruiz I., Medina M. Á., Martínez-Poveda B.: From food to genes: Transcriptional regulation of metabolism by lipids and carbohydrates. Nutrients 2021;13(5):1513.
  • 8. Brygadyrenko V. V., Lieshchova M. A., Bilan M. V., Tishkina N. M., Horchanok A. V.: Effect of alcohol tincture of Aralia elata on the organism of rats and their gut microbiota against the background of excessive fat diet. Regulatory Mechanisms in Biosystems 2019;10(4):497–506. http://doi.org/10.15421/021973.
  • 9. Bubb K. J., Nelson A. J., Nicholls S. J.: Targeting triglycerides to lower residual cardiovascular risk. Expert Review of Cardiovascular Therapy 2022;20(3):185–191. https://doi.org/10.1080/14779072.2022.2058489.
  • 10. Buza V., Cătană L., Andrei S. M., Ștefănuț L. C., Răileanu Ș., Matei M. C., Vlasiuc I., Cernea M.: In vitro anthelmintic activity assessment of six medicinal plant aqueous extracts against donkey strongyles. Journal of Helminthology 2020;94:e147. http://doi.org/10.1017/s0022149x20000310.
  • 11. Chawla R.: Practical clinical biochemistry: Methods and interpretations, 4th ed.; JP Medical Ltd.: London, UK, 2014.
  • 12. Chun J., Song K., Kim Y. S.: Sesquiterpene lactonesenriched fraction of Inula helenium L. induces apoptosis through inhibition of signal transducers and activators of transcription 3 signaling pathway in MDA-MB-231 breast cancer cells. Phytotherapy Research 2018;32(12): 2501–2509. http://doi.org/10.1002/ptr.6189.
  • 13. Crismaru I., Pantea Stoian A., Bratu O. G., Gaman M.-A., Stanescu A. M. A., Bacalbasa N., Diaconu C. C.: Low-density lipoprotein cholesterol lowering treatment: the current approach. Lipids in Health and Disease 2020;19(1). https://doi.org/10.1186/s12944-020-01275-x.
  • 14. da Silva L. P., Borges B. A., Veloso M. P., Chagas-Paula D. A., Gonçalves R. V., Novaes R. D.: Impact of sesquiterpene lactones on the skin and skin-related cells? A systematic review of in vitro and in vivo evidence. Life Sciences 2021;265:118815. https://doi.org/10.1016/j.lfs.2020.118815.
  • 15. de Kort M., Weber K., Wimmer B., Wilutzky K., Neuenhahn P., Allingham P., Leoni A.-L.: Historical control data for hematology parameters obtained from toxicity studies performed on different Wistar rat strains: Acceptable value ranges, definition of severity degrees, and vehicle effects. Toxicology Research and Application 2020;4:239784732093148. https://doi.org/10.1177/2397847320931484.
  • 16. Ebrahimi F., Farzaei M. H., Bahramsoltani R., Heydari M., Naderinia K., Rahimi R.: Plant-derived medicines for neuropathies: A comprehensive review of clinical evidence. Reviews in the Neurosciences 2019;30(6):671–684. http://doi.org/10.1515/revneuro-2018-0097.
  • 17. Ekbatan M. R., Khoramjouy M., Gholamine B., Faizi M., Sahranavard S.: Evaluation of anticonvulsant effect of aqueous and methanolic extracts of seven Inula species. Iranian Journal of Pharmaceutical Research 2019;18:208–220. http://doi.org/10.22037/ijpr.2019.15509.13151.
  • 18. Ejelonu O. C., Oluba S. O., Awolokun B. O., Elekofehinti O. O., Adanlawo I. G.: Saponin-rich extracts reverse obesity and offer protection against obesity-induced inflammation in high-fat diet mice. Journal of Medicinal Plants for Economic Development 2021;5:101.doi:10.4102/jomped.v5i1.101.
  • 19. Fan W.: Epidemiology in diabetes mellitus and cardiovascular disease. Cardiovascular Endocrinology 2017);6(1):8–16.
  • 20. Filho J.W., Lima C. C., Paunksnis M. R. R., Silva A. A., Perilhão M. S., Caldeira M., de Souza R. R.: Reference database of hematological parameters for growing and aging rats. The Aging Male 2018;21(2):145-148.
  • 21. Ghonime M., Eldomany R., Abdelaziz A., Soliman H.: Evaluation of immunomodulatory effect of three herbal plants growing in Egypt. Immunopharmacology and Immunotoxicology 2010;33(1):141–145. https://doi.org/10.3109/08923973.2010.487490.
  • 22. Gierlikowska B., Gierlikowski W., Bekier K., Skalicka-Woźniak K., Czerwińska M. E., Kiss A. K.: Inula helenium and Grindelia squarrosa as a source of compounds with anti-inflammatory activity in human neutrophils and cultured human respiratory epithelium. Journal of Ethnopharmacology 2020;249:112311. http://doi.org/10.1016/j.jep.2019.112311.
  • 23. Grigore A., Neagu G., Nita S., Ionita C., Ionita L., Goanta A.-M., Fernoaga C., Danacu V., Albulescu R.: Biomedical application of a herbal product based on two Asteraceae species. Applied Sciences 2020;10(18): article 6444. http://doi.org/10.3390/app10186444.
  • 24. He S., Zhang C., Zhou P., Zhang X., Ye T., Wang R., Sun G., Sun X.: Herb-induced liver injury: Phylogenetic relationship, structure-toxicity relationship, and herbingredient network analysis. International Journal of Molecular Sciences 2019;20(15):3633. http://doi.org/10.3390/ijms20153633.
  • 25. He X., Zhao W.-Y., Shao B., Zhang B.-J., Liu T.-T., Sun C.-P., Huang H. L., Wu J. R., Liang J. H., Ma X.-C.: Natural soluble epoxide hydrolase inhibitors from Inula helenium and their interactions with soluble epoxide hydrolase. International Journal of Biological Macromolecules 2020;158:1362–1368. http://doi.org/10.1016/j.ijbiomac.2020.04.227.
  • 26. Heghes S. C., Vostinaru O., Rus L. M., Mogosan C., Iuga C. A., Filip L.: Antispasmodic effect of essential oils and their constituents: A review. Molecules 2019;24(9):1675. http://doi.org/10.3390/molecules24091675.
  • 27. Hernández Bautista R. J., Mahmoud A. M., Königsberg M., López Díaz Guerrero N. E.: Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomedicine and Pharmacotherapy 2019;111:503–516. doi:10.1016/j.biopha.2018.12.108.
  • 28. Kabiri M., Kamalinejad M., Bioos S., Shariat M., Sohrabvand F.: Comparative study of the effects of chamomile (Matricaria chamomilla L.) and cabergoline on idiopathic hyperprolactinemia: A pilot randomized controlled trial. Iranian Journal of Pharmaceutical Research 2019;18(3):1612–1621. http://doi.org/10.22037/ijpr.2019.1100758.
  • 29. Kamatou G. P. P., Viljoen A. M.: A review of the application and pharmacological properties of α-bisabolol and α-bisabolol-rich oils. Journal of the American Oil Chemists’ Society 2009;87(1):1–7. http://doi.org/10.1007/s11746-009-1483-3.
  • 30. Kim D. N., Schmee J., Thomas W. A.: Dietary fish oil added to a hyperlipidemic diet for swine results in reduction in the excessive number of monocytes attached to arterial endothelium. Atherosclerosis 1990;81(3):209–216. https://doi.org/10.1016/0021-9150(90)90068-t.
  • 31. Koc K., Ozdemir O., Ozdemir A., Dogru U., Turkez H.: Antioxidant and anticancer activities of extract of Inula helenium (L.) in human U-87 MG glioblastoma cell line. Journal of Cancer Research and Therapeutics 2018;14(3):article 658. http://doi.org/10.4103/0973-1482.187289.
  • 32. Kumar C., Kumar A., Nalli Y., Lone W. I., Satti N. K., Verma M. K., Ahmed Z., Ali A.: Design, synthesis and biological evaluation of alantolactone derivatives as potential anti-inflammatory agents. Medicinal Chemistry Research 2019;28(6):849–856. http://doi.org/10.1007/s00044-019-02337-1.
  • 33. Lieshchova M. A., Bohomaz A. A., Brygadyrenko V. V.: Effect of Salvia officinalis and S. sclarea on rats with a high-fat hypercaloric diet. Regulatory Mechanisms in Biosystems 2021; 12(3):554–563. https://doi.org/10.15421/022176.
  • 34. Lieshchova M. A., Brygadyrenko V. V.: Influence of Lavandula angustifolia, Melissa officinalis and Vitex angus-castus on the organism of rats fed with excessive fat-containing diet. Regulatory Mechanisms in Biosystems 2021;12(1):169–180. https://doi.org/10.15421/022125.
  • 35. Lieshchova M., Brygadyrenko V.: Effects of Origanum vulgare and Scutellaria baicalensis on the physiological activity and biochemical parameters of the blood in rats on a high-fat diet. Scientia Pharmaceutica 2022;90:49.
  • 36. Lieshchova M., Brygadyrenko V.: Effect of Rhodiola rosea Rhizomes and Punica granatum Fruit Peel on the metabolic processes and physiological activity of rats fed with excessive fat diet. Food Technology and Biotechnology 2023;61(2):202–211. https://doi.org/10.17113/ftb.61.02.23.7913.
  • 37. Lieshchova M. A., Brygadyrenko V. V. Effect of Echinacea purpurea and Silybum marianum seeds on the body of rats with an excessive fat diet. Biosystems Diversity 2023;31(1):90–99. https://doi.org/10.15421/012310.
  • 38. Lunz K., Stappen I.: Back to the roots – an overview of the chemical composition and bioactivity of selected root-essential oils. Molecules 2021;26(11):3155. https://doi.org/10.3390/molecules26113155.
  • 39. McKay D. L., Blumberg J. B.: A Review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytotherapy Research 2006;20(7):519–530. https://doi.org/10.1002/ptr.1900.
  • 40. Mangalesh S., Yadav P., Dudani S., Mahesh N. K.: Atherogenic index of plasma predicts coronary artery disease severity and major adverse cardiac events in absence of conventional risk factors. Coronary Artery Disease 2022;33(7):523–530. https://doi.org/10.1097/mca.0000000000001166.
  • 41. Monserrat-Mesquida M., Bouzas C., Mascaró C. M., Tejada S., Sureda A.: Probiotics as potential therapy in the management of non-alcoholic fatty liver disease (NAFLD). Fermentation 2023;9(4):395. https://doi.org/10.3390/fermentation9040395.
  • 42. Nakazawa T., Yasuda T., Ueda J., Ohsawa K.: Antidepressant-Like Effects of Apigenin and 2,4,5-Trimethoxycinnamic Acid from Perilla frutescens in the Forced Swimming Test. Biological and Pharmaceutical Bulletin 2003;26(4):474–480. https://doi.org/10.1248/bpb.26.474.
  • 43. Petterino C., Argentino-Storino A.: Clinical chemistry and haematology historical data in control Sprague-Dawley rats from pre-clinical toxicity studies. Experimental and Toxicologic Pathology 2006;57(3):213–219. https://doi.org/10.1016/j.etp.2005.10.002.
  • 44. Petronilho S., Maraschin M., Coimbra M. A., Rocha S. M.: In vitro and in vivo studies of natural products: A challenge for their valuation. The case study of chamomile (Matricaria recutita L.). Industrial Crops and Products 2012;40:1–12. https://doi.org/10.1016/j.indcrop.2012.02.041.
  • 45. Pisoschi A. M., Pop A., Cimpeanu,C., Predoi G.: Antioxidant capacity determination in plants and plant-derived products: A review. Oxidative Medicine and Cellular Longevity 2016;9130976. http://doi.org/10.1155/2016/9130976.
  • 46. Portnychenko A. G., Vasylenko M. I., Aliiev R. B., Kozlovska M. G., Zavhorodnii M. O., Tsapenko P. K., Rozova K. V., Portnichenko V. I.: The prerequisites for the development of type 2 diabetes or prediabetes in rats fed a high-fat diet. Regulatory Mechanisms in Biosystems 2023;14(1);16–22. https://doi.org/10.15421/022303.
  • 47. Rafraf M., Zemestani M., Asghari-Jafarabadi M.: Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes. Journal of Endocrinological Investigation 2014);38(2):163–170. https://doi.org/10.1007/s40618-014-0170-x.
  • 48. Radu F., Potcovaru C.-G., Salmen T., Filip P. V., Pop C., Fierbințeanu-Braticievici C.: The link between NAFLD and metabolic syndrome. Diagnostics 2023;13(4):614. https://doi.org/10.3390/diagnostics13040614.
  • 49. Rasul A., Khan M., Ali M., Li J., Li X.: Targeting apoptosis pathways in cancer with alantolactone and isoalantolactone. The Scientific World Journal 2013;248532. http://doi.org/10.1155/2013/248532.
  • 50. Saad B., Zaid H., Shanak S., Kadan S.: Anti-obesity Medicinal Plants. Anti-Diabetes and Anti-Obesity Medicinal Plants and Phytochemicals 2017;59–93. https://doi.org/10.1007/978-3-319-54102-0_3.
  • 51. Saghahazrati S., Ayatollahi S., Kobarfard F., Minaii Zang B.: The synergistic effect of glucagon-like peptide-1 and chamomile oil on differentiation of mesenchymal stem cells into insulin-producing cells. Cell Journal 2020;21(4):371–378. http://doi.org/10.22074/cellj.2020.6325.
  • 52. Salazar-Gómez A., Ontiveros-Rodríguez J. C., Pablo-Pérez S. S., Vargas-Díaz M. E., Garduño-Siciliano L.: The potential role of sesquiterpene lactones isolated from medicinal plants in the treatment of the metabolic syndrome – A review. S. Afr. J Bot. 2020;135:240–251. http://doi.org/10.1016/j.sajb.2020.08.020.
  • 53. Sanchez M., Gonzalez-Burgos E., Gomez-Serranillos M. P.: The pharmacology and clinical efficacy of Matricaria recutita L.: A systematic review of in vitro, in vivo studies and clinical trials. Food Reviews International 2020;1–35. http://doi.org/10.1080/8755912 9.2020.1834577.
  • 54. Sayyar Z., Yazdinezhad A., Hassan M., Jafari Anarkooli I.: Protective effect of Matricaria chamomilla ethanolic extract on hippocampal neuron damage in rats exposed to formaldehyde. Oxidative Medicine and Cellular Longevity 2018;6414317. https://doi.org/10.1155/2018/6414317.
  • 55. Seibenhener M. L., Wooten M. C.: Use of the open field maze to measure locomotor and anxiety-like behavior in mice. Journal of Visualized Experiments 2015;96. https://doi.org/10.3791/52434.
  • 56. Shwaikh A. K., Hassan A. J., Rashid K. H.: The effects of Methotrexate and Matricaria Chamomilla extract on some immunological and hematological parameters in male albino rats. Annals of the Romanian Society for Cell Biology 2021;25(6):15319–15330.
  • 57. Singh O., Khanam Z., Misra N., Srivastava M. K.: Chamomile (Matricaria chamomilla L.): An overview. Pharmacognosy reviews 2011;5(9):82–95. https://doi.org/10.4103/0973-7847.79103.
  • 58. Srivastava J. K., Shankar E., Gupta S.: Chamomile: A herbal medicine of the past with a bright future (review). Molecular Medicine Reports 2010;3(6):895–901. http://doi.org/10.3892/mmr.2010.377.
  • 59. Tavares W. R., Seca A.: Inula L. secondary metabolites against oxidative stress-related human diseases. Antioxidants 2019;8(5):122. http://doi.org/10.3390/ antiox8050122.
  • 60. Vigneshwar R., Arivuchelvan A., Mekala P., Imayarasi K.: Sex-specific reference intervals for Wistar albino rats: hematology and clinical biochemistry. Indian Journal of Animal Health 2021;60(1):58–65. https://doi.org/10.36062/ijah.60.1.2021.58-65.
  • 61. Viola H., Wasowski C., Levi de Stein M., Wolfman C., Silveira R., Dajas F., Medina J., Paladini A.: Apigenin, a Component of Matricaria recutita Flowers, is a Central Benzodiazepine Receptors-Ligand with Anxiolytic Effects. Planta Medica 1995;61(03):213–216. https://doi.org/10.1055/s-2006-958058.
  • 62. Wang J., Zhao Y. M., Tian Y. T., Yan C. L., Guo C. Y.: Ultrasound-assisted extraction of total phenolic compounds from Inula helenium. The Scientific World Journal 2013;157527. http://doi.org/10.1155/2013/157527.
  • 63. Wang M., Luo W., Ye L., Jin L., Yang B., Zhang Q., Qian J., Wang Y., Zhang Y., Liang G.: Dectin-1 plays a deleterious role in high fat diet-induced NAFLD of mice through enhancing macrophage activation. Acta Pharmacologica Sinica 2022;44(1):120–132. https://doi.org/10.1038/s41401-022-00926-2.
  • 64. Wang Q., Gao S., Wu G., Yang N., Zu X., Li W., Xie N., Zhang R. R., Li C. W., Hu Z. L. Zhang W.: Total sesquiterpene lactones isolated from Inula helenium L. attenuates 2,4-dinitrochlorobenzeneinduced atopic dermatitis-like skin lesions in mice. Phytomedicine 2018;46:78–84. http://doi.org/10.1016/j.phymed.2018.04.036.
  • 65. Wei X., Gao Y., Cheng F., Yun S., Chang M., Cao J., Cheng Y., Feng C.: The Effects of a High-Fat/Cholesterol Diet on the Intestine of Rats Were Attenuated by Sparassis latifolia Polysaccharides. Food Technology and Biotechnology 2022;60(4):469–487. https://doi.org/10.17113/ftb.60.04.22.7561.
  • 66. Yip T. C.-F., Lyu F., Lin H., Li G., Yuen P.-C., Wong V. W.-S., Wong G. L.-H.: Non-invasive biomarkers for liver inflammation in non-alcoholic fatty liver disease: present and future. Clinical and Molecular Hepatology 2023;29:171–183. https://doi.org/10.3350/cmh.2022.0426.
  • 67. Yan Y. Y., Zhang Q., Zhang B., Yang B., Lin N. M.: Active ingredients of Inula helenium L. exhibits similar anticancer effects as isoalantolactone in pancreatic cancer cells. Natural Product Research 2019;34(17):2539–2544.http://doi.org/10.1080/14786419.2018.1543676.
  • 68. Zand R. R. S., Jenkins D. J. A., Diamandis E. P.: Effects of natural products and nutraceuticals on steroid hormone-regulated gene expression. Clinica Chimica Acta 2001;312(1–2):213–219. https://doi.org/10.1016/s0009-8981(01)00626-x.
  • 69. Zampelas A., Magriplis E.: New insights into cholesterol functions: a friend or an enemy? Nutrients 2019;11(7):1645. https://doi.org/10.3390/nu11071645.
  • 70. Zazharskyi V. V., Davydenko P. О., Kulishenko O. М., Borovik I. V., Brygadyrenko V. V.: Antimicrobial activity of 50 plant extracts. Biosystems Diversity 2019;27(2):163–169. http://doi.org/10.15421/011922.
  • 71. Zemestani M., Rafraf M., Asghari-Jafarabadi M.: Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nutrition 2016;32(1):66–72. https://doi.org/10.1016/j.nut.2015.07.011.
  • 72. Zemestani M., Rafraf M., Asghari-Jafarabadi M.: Effects of chamomile tea on inflammatory markers and insulin resistance in patients with type 2 diabetes mellitus. Trends in General Practice 2018;1(3):1–6. https://doi.org/10.15761/tgp.1000117.
  • 73. Zhang B.-H., Yin F., Qiao Y.-N., Guo S.-D.: Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis. Frontiers in Molecular Biosciences 2022;9:909151 https://doi.org/10.3389/fmolb.2022.909151.
  • 74. Zhao P., Pan Z., Luo Y., Zhang L., Li X., Zhang G., Zhang Y., Cui R., Sun M., Zhang X.: Alantolactone Induces Apoptosis and Cell Cycle Arrest on Lung Squamous Cancer SK-MES-1 Cells. Journal of Biochemical and Molecular Toxicology 2015;29(5):199–206. https://doi.org/10.1002/jbt.21685.
  • 75. Zlatić N., Jakovljević D., Stanković M.: Temporal, plant part, and interpopulation variability of secondary metabolites and antioxidant activity of Inula helenium L. Plants 2019;8(6):179. http://doi.org/10.3390/plants8060179

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-94e8ad2f-be60-471c-94fe-208aee7933fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.