PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 20 | 3 |

Tytuł artykułu

Colour, mechanical properties and water vapour permeability of pectin films

Treść / Zawartość

Warianty tytułu

PL
Barwa, właściwości mechaniczne i przepuszczalność pary wodnej filmów pektynowych

Języki publikacji

EN

Abstrakty

EN
The aim of this work was to analyse the effect of pectin and glycerol concentration on colour, mechanical properties and water vapour permeability of pectin edible films. Pectin films were obtained from apple pectin film-forming solutions at concentrations of 1.5, 2.5 and 3.5%. Glycerol was added as a plasticizer at 30, 50 and 70% (w/w of pectin). Colour was measured in the L*a*b* system and total colour difference was calculated. Water vapour permeability at relative humidity differentials of 30-100% was measured at 25°C. Mechanical properties were presented as tensile force and elongation at break. Based on the results obtained, increasing content of pectin caused an increase in total colour difference, water vapour permeability and tensile force of ana-lysed films. Glycerol caused increasing elongation at break and water vapour permeability.
PL
Celem pracy było zbadanie wpływu ilości pektyny i glicerolu na barwę, wła-ściwości mechaniczne i przepuszczalność pary wodnej filmów pektynowych. Filmy pektynowe otrzymano z wodnych roztworów powłokotwórczych pektyny jabłkowej o stężeniu 1,5; 2,5 i 3,5%. Glicerol został dodany jako plastyfikator w ilości 30, 50 i 70%. Barwa została zmierzona w syste-mie L*a*b*, obliczono bezwzględną różnicę barwy. Właściwości mechaniczne wyrażono jako siłę zerwania oraz wydłużenie. Przepuszczalność pary wodnej zmierzono w temperaturze 25°C przy różnicy w wilgotnościach względnych środowiska 30-100%. Na podstawie otrzymanych wyników zaobserwowano wzrost bezwzględnej różnicy barwy, przepuszczalności pary wodnej i siły zerwania filmów zawierających wyższe ilości pektyny. Glicerol wpłynął na zwiększenie wydłużenia i prze-puszczalności pary wodnej analizowanych filmów.

Wydawca

-

Czasopismo

Rocznik

Tom

20

Numer

3

Opis fizyczny

p.375-384,ref.

Twórcy

autor
  • Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
autor
  • Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
autor
  • Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland

Bibliografia

  • Altenhofen da Silva M., Krause Bierhalz A.C., Guenter Kieckbusch T., 2009. Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydr. Polym., 77, 736-742.
  • Banker G.S., 1966. Film coating theory and practice. J. Pharm. Sci., 55, 81-89.
  • Bodnar I., Alting A.C., Verschueren M., 2007. Structural effects on the permeability of whey pro-tein films in as aqueous environment. Food Hydrocolloids, 21, 889-895.
  • Chillo S., Flores S., Mastromatteo M., Conte M., Gershenson L., Del Nobile M.A., 2008. Influence of glycerol and chitosan on tapioca starch-based edible film properties. J. Food Eng., 88(2), 159-168.
  • Coupland J.N., Shaw N.B., Monahan F.J., O’Riordan E.D., O’Sullivan M., 2000. Modeling the effect of glycerol on the moisture sorption behavior of whey protein edible films. J. Food Eng., 43(1), 25-30.
  • Cuq B., Gontard N., Aymard C., Guilbert, S. 1997. Relative humidity and temperature effects on mechanical and water vapor barrier properties of myofibrillar protein-based films. Polymer Gels and Networks, 5, 1-15.
  • Debeaufort F., Martin-Polo M., Voilley A., 1993. Polarity and structure affect water vapor perme-ability of model edible films. J. Food Sci., 58, 428-434.
  • Doolittle A.K., 1965. Mechanism of plastization. In: Bruins P.F., editor. Plasticizer technology. Vol. 1. New York: Reinhold Publishing Corp. Ch. 1, 1-20.
  • Falguera V., Quintero J.P., Jimenez A., Munoz J.A., Ibarz A., 2011. Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci. Technol., 22, 292-303.
  • Flores S., Conte A., Campos C., Gerschenson L., Del Nobile M., 2007. Mass transport properties of tapioca-based active edible films. J. Food Eng., 81, 580-586.
  • Galus S., Mathieu H., Lenart A., Debeaufort F. 2012. Effect of modified starch or maltodextrines incorporation on the barrier and mechanical properties, moisture sensitivity and appearance of soy protein isolate-based edible films. Innov. Food Sci. Emerg. Technol., 16, 148-154.
  • Gennadios A., Weller C.L., Hanna M. A., Froning G.W. 1996. Mechanical and barrier properties of egg albumen films. J. Food Sci., 61, 585-589.
  • Ghanbarzadeh B., Almasi H., Entezami A.A., 2010. Physical properties of edible modified starch/carboxymethyl cellulose films. Innov. Food Sci. Emerg. Technol., 11, 697-702.
  • Gontard N., Guilbert S., Cuq J.L., 1993. Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of edible wheat gluten films. J. Food Sci., 58, 206-211.
  • Guerrero P., Retegi A., Gabilondo N., De la Caba K., 2010. Mechanical and thermal properties of soy protein films processed by casting and compression. J. Food Eng., 100, 145-151.
  • Guilbert S., Gontard N. Gorris L.G.M., 1996. Prolongation of the shelf-life of perishable food prod-ucts using biodegradable films and coatings. LWT - Food Sci. Technol., 29, 10-17.
  • Hu G., Chen J., Gao J., 2009. Preparation and characteristics of oxidized potato starch films. Carbo-hydr. Polym., 76(2), 291-298.
  • Irissin-Mangata J., Bauduin G., Boutevin B. Gontard N., 2001. New plasticizers for wheat gluten films. European Polym. J., 37, 1533-1541.
  • Jangchud A., Chinnan M.S., 1999. Properties of peanut protein films sorption isotherm and plasti-cizer effect. LWT - Food Sci. Technol., 32(2), 89-94.
  • Kastner H., Einhorn-Stoll U., Senge B., 2012. Structure formation in sugar containing pectin gels e influence of Ca2+ on the gelation of lowmethoxylated pectin at acidic pH. Food Hydrocolloids 27, 42-49.
  • Kunte L.A., Gennadios A., Cuppett S.L., Hanna M.A., Weller C.L., 1997. Cast films from soy protein isolate and fractions. Cereal Chem., 74, 115-118.
  • Mali S., Sakanaka L.S., Yamashita F. Grossmann M.V.E., 2005. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polym., 60, 283-289.
  • Mariniello L., Di Pierro P., Esposito C., Sorrentino A., Masi P., Porta R., 2003. Preparation and mechanical properties of edible pectin-soy flour films obtained in the absence or presence of transglutaminase. J. Biotechnol., 102, 191-198.
  • Martelli S.M., Moore G., Paes S.S., Gandolfo C., Laurindo J.B., 2006. Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films, LWT - Food Sci. Technol., 39, 292-301.
  • Marudova M., MacDougall A.J. Ring S.G., 2004. Pectin–chitosan interactions and gel formation, Carbohydrate Res., 339, 1933-1939.
  • McHugh T.H., 2000. Protein-lipid interactions in edible films and coatings. Nahrung, 44, 148-151.
  • McHugh T.H., Aujard J.F., Krochta J.M., 1994. Plasticized whey protein edible films: water vapor permeability properties. J. Food Sci., 59, 416-419, 423.
  • McHugh T.H., Krochta J.M., 1994. Sorbitol vs. glycerol-plasticized whey protein edible films: inte-grated oxygen permeability and tensile property evaluation. J. Agric. Food Chem., 42, 841-845.
  • Rhim J-W., Gennadios A., Weller C.L., Hanna M.A., 2002. Sodium dodecyl sulfate treatment im-proves properties of cast films from soy protein isolate. Ind. Crops Products, 15, 199-205.
  • Rojas-Grau M.A., Soliva-Fortuny R., Martin-Belloso O., 2009. Edible coatings to incorporate active ingredients to freshcut fruits: a review. Trends Food Sci. Technol., 20, 438-447.
  • Shaw N.B., Monahan F.J., O’Riordan E.D., & O’Sullivan M., 2002a. Effect of soy oil and glycerol on physical properties of composite WPI films. J. Food Eng.,51, 299-304.
  • Shaw N.B., Monahan F.J., O’Riordan E.D., & O’Sullivan M., 2002b. Physical properties of WPI films plasticized with glycerol, xylitol, or sorbitol. J. Food Sci., 67, 164-167.
  • Sobral P.J., dos Santos J.S., Garcia F.T., 2005. Effect of protein and plasticizer concentration in film forming solutions on physical properties of edible films based on muscle proteins of a Thai Ti-lapia. J. Food Eng., 70, 93-100.
  • Sothornvit R., Krochta J.M., 2001. Plasticizer effect on mechanical properties of -lactoglobulin films. J. Food Eng., 50(3), 149-155.
  • Vanin F.M., Sobral P.J.A., Menegalli F.C., Carvalho R.A., Habitante A.M.Q.B. 2005. Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocolloids 19(5), 899-907.
  • Zhang Y., Han J.H., 2008. Sorption isotherm and plasticization effect of moisture and plasticizers in pea starch film. J. Food Sci., 73(7), 313-324.
  • Zsivanovits G., MacDougall A. J., Smith A. C., Ring S G., 2004. Material properties of concen-trated pectin networks. Carbohydr. Polym., 339, 1317-1322.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-94e37724-5ffd-46cf-8666-72748002b316
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.