PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 20 | 1 |

Tytuł artykułu

Terrestrial behavior and trackway morphology of Neotropical bats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bats (Chiroptera) are unique among flying animals in being the only mammal capable of powered flight and the only extant group that is quadrupedal. Extant bats demonstrate varying levels of terrestrial competency, however, the terrestrial abilities of many groups are unknown. Here we examine the terrestrial ability and resultant traces produced by bats belonging to the families Phyllostomidae and Emballonuridae. Five different subfamilies of phyllostomids and the emballonurid Saccopteryx bilineata were video recorded and analyzed for their terrestrial locomotor behaviors over a sand medium, with resultant tracks and trackways cast and measured. Behaviors and traces were compared to morphological criteria previously hypothesized to constrain terrestrial abilities of bats. Type 1 species (presumed poor walkers) generally performed only a breaststrokelike crawl and nonambulatory searching behavior, whereas the terrestrially adept Type 3 Desmodus rotundus performed a diagonal sequence walk and bound. Behaviors and traces produced by the intermediate Type 2 S. bilineata were indistinguishable from those of the Type 1 bats. Results only partially support the hypothesized morphological basis for terrestrial ability in bats and indicate that ecological differences or as yet unrecognized morphological variations may be the cause of behavioral variations in bats of the same morphotype. This research fills gaps in our knowledge of the terrestrial behaviors of nondesmodontine phyllostomid bats, and is the first study to examine the terrestrial behaviors of any species of emballonurid. Results of this research can be used for comparison to potential bat traces recorded in the geologic record, allowing for a better understanding of bat evolution and dispersal patterns.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

20

Numer

1

Opis fizyczny

p.229-250,fig.,ref.

Twórcy

autor
  • Department of Ecology & Evolutionary Biology, The University of Kansas, Lawrence, KS 66045, USA
  • Division of Vertebrate Paleontology, Natural History Museum & Biodiversity Institute, The University of Kansas, Lawrence, KS 66045, USA
  • Department of Geology, The University of Kansas, Lawrence, KS 66045, USA

Bibliografia

  • 1. Altenbach, J. S. 1979. Locomotor morphology of the vampire bat, Desmodus rotundus. Special Publication of the American Society of Mammalogists, 6: 1–137. Google Scholar
  • 2. Antoine, P-O., M. A. Abello, S. Adnet, A. J. Altamirano Sierra, P. Baby, G. Billet, M. Boivin, Y. Calderón, A. Candela, J. Chabain , et al. 2016. A 60-million-year history of western Amazonian ecosystems in Contamana, eastern Peru. Gondwana Research, 31: 30–59. Google Scholar
  • 3. Bader, K. S., S. T. Hasiotis, and L. D. Martin. 2009. Application of forensic science techniques to trace fossils on dinosaur bones from a quarry in the Upper Jurassic Morrison Formation, northeastern Wyoming. PALAIOS, 24: 120–158. Google Scholar
  • 4. Baker, R. J., O. R. P. Bininda-Emonds, H. Mantilla-Meluk, C. A. Porter, and R. A. Van Den Bussche. 2012. Molecular time scale diversification of feeding strategy and morphology in New World leaf-nosed bats (Phyllosto midae): a phylogenetic perspective. Pp. 105–161, in Evolutionary history of bats: fossils, molecules and morphology ( G. F. Gunnell and N. B. Simmons, eds.). Cambridge University Press, New York, xii + 560 pp. Google Scholar
  • 5. Baker, R. J., S. Solari, A. Cirranello, and N. B. Simmons. 2016. Higher classification of phyllostomid bats with a summary of DNA synapomorphies. Acta Chiropterologica, 18: 1–38. Google Scholar
  • 6. Bininda-Emonds, O. R. P., M. Cardillo, K. E. Jones, R. D. E. MacPhee, R. M. D. Beck, R. Grenyer, S. A. Price, R. A. Vos, J. L. Gittleman, and A. Purvis. 2007. The delayed rise of present-day mammals. Nature, 446: 507–512. Google Scholar
  • 7. Bradbury, J. W., and S. L. Vehrencamp. 1976. Social organization and foraging in emballonurid bats: I. Field studies. Behavioral Ecology and Sociobiology, 1: 337–381. Google Scholar
  • 8. Brand, L. 1979. Field and laboratory studies on the Coconino Sandstone (Permian) vertebrate footprints and their paleoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 28: 25–38. Google Scholar
  • 9. Butler, P. M., and A. T. Hopwood. 1957. Insectivora and Chiroptera from the Miocene rocks of Kenya Colony. British Museum of Natural History, Fossil Mammals of Africa, 13: 1–35. Google Scholar
  • 10. Cirranello, A., N. B. Simmons, S. Solari, and R. J. Baker. 2016. Morphological diagnoses of higher-level phyllostomid taxa (Chiroptera: Phyllostomidae). Acta Chiroptero logica, 18: 39–71. Google Scholar
  • 11. Coates, M. I., J. E. Jeffery, and M. Ruta. 2002. Fins to limbs: what the fossils say. Evolution and Development, 4: 390–401. Google Scholar
  • 12. Contessi, M. 2013. First report of mammal-like tracks from the Cretaceous of North Africa (Tunisia). Cretaceous Research, 42: 48–54. Google Scholar
  • 13. Counts, J. W., and S. T. Hasiotis, 2009. Neoichnological experiments documenting burrowing behaviors and traces of the masked chafer beetle (Coleoptera: Scarabaeidae: Cyclocephala sp.): behavioral significance of extant soildwelling insects to understanding backfilled trace fossils in the continental realm. PALAIOS, 24: 75–92. Google Scholar
  • 14. Czaplewski, N. J. 1997. CHIROPTERA. Pp. 410–431, in Vertebrate paleontology in the Neotropics: the Miocene fauna of La Venta, Colombia ( R. F. Kay, R. H. Madden, F. L. Cifelli, and J. J. Flynn, eds.). Smithsonian Institution Press, Washington, D.C., xiii + 608 pp. Google Scholar
  • 15. Czaplewski, N. J., M. Takai, T. M. Naeher, N. Shigehara, and T. Setoguchi. 2003. Additional bats from the Middle Miocene La Venta fauna of Colombia. Paleontología, 27: 263–282. Google Scholar
  • 16. Daniel, M. J. 1979. The New Zealand short-tailed bat, Mystacina tuberculata: a review of present knowledge. New Zealand Journal of Zoology, 6: 357–370. Google Scholar
  • 17. Datzmann, T., O. Von Helversen, and F. Mayer. 2010. Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia). BMC Evolutionary Biology, 10: 1–14. Google Scholar
  • 18. Dawkins, R., 1999. Extended phenotype. Oxford University Press, Oxford, 307 pp. Google Scholar
  • 19. Dietz, C. L. 1973. Bat walking behavior. Journal of Mammalogy, 54: 790–792. Google Scholar
  • 20. Eiting, T. P., and G. F. Gunnell. 2009. Global completeness of the bat fossil record. Journal of Mammalian Evolution, 16: 151–173. Google Scholar
  • 21. Fairchild, J. M., and S. T. Hasiotis. 2011. Terrestrial and aquatic neoichnological laboratory experiments with the freshwater crayfish Orconectes: trackways on media of varying grain size, moisture, and inclination. PALAIOS, 26: 790–804. Google Scholar
  • 22. Falk, A. R., S. T. Hasiotis, and L. D. Martin. 2010. Feeding traces associated with bird tracks from the Lower Cretaceous Haman Formation, Republic of Korea. PALAIOS, 25: 730–741. Google Scholar
  • 23. Falk, A. R., J-D. Lim, and S. T. Hasiotis. 2014. A behavioral analysis of fossil bird tracks from the Haman Formation (Republic of Korea) shows a nearly modern avian ecosystem. Vertebrata PalAsiatica, 52: 129–152. Google Scholar
  • 24. Falk, A. R., S. T. Hasiotis, E. Gong, J-D. Lim, and E. Brewer. 2017. A new experimental setup for studying avian neoichnology and the effects of grain size and moisture content on tracks: trials using the domestic chicken (Gallus gallus). PALAIOS, 32: 1–22. Google Scholar
  • 25. Farlow, J. O. 1989. Ostrich footprints and trackways: implications for dinosaur ichnology. Pp. 243–248, in Dinosaur tracks and traces ( D. D. Gillette and M. G. Lockley, eds.). Cambridge University Press, Cambridge, xviii + 476 pp. Google Scholar
  • 26. Faul, H., and W. A. Roberts. 1951. New fossil footprints from the Navajo(?) Sandstone of Colorado. Journal of Sedimentary Petrology, 25: 266–274. Google Scholar
  • 27. Ferrarezzi, H., and E. A. Gimenez. 1996. Systematic patterns and the evolution of feeding habits in Chiroptera (Archonta: Mammalia). Journal of Computational Biology, 1: 75–94. Google Scholar
  • 28. Gardiner, J. D., and R. L. Nudds. 2011. No apparent ecological trend to the flight-initiating jump performance of five bat species. Journal of Experimental Biology, 214: 2182–2188. Google Scholar
  • 29. Goldring, R., J. E. Pollard, and J. D. Radley. 2005. Trace fossils and pseudofossils from the Wealden strata (nonmarine Lower Cretaceous) of southern England. Cretaceous Re search, 26: 665–685. Google Scholar
  • 30. Gunnell, G. F., E. L. Simons, and E. R. Seiffert. 2008. New bats (Mammalia: Chiroptera) from the late Eocene and early Oligocene, Fayum Depression, Egypt. Journal of Vertebrate Paleontology, 28: 1–11. Google Scholar
  • 31. Habib, M. B. 2008. Comparative evidence for quadrupedal launch in pterosaurs. Zitteliana, 28B: 159–166. Google Scholar
  • 32. Halfen, A. F., and S. T. Hasiotis. 2010. Neoichnological study of the traces and burrowing behaviors of the Western harvester ant Pogonomyrmex occidentalis (Insecta: Hymenoptera: Formicidae): paleopedogenic and paleoecological implications. PALAIOS, 25: 703–720. Google Scholar
  • 33. Hand, S., M. Novacek, H. Godthelp, and M. Archer. 1994. First Eocene bat from Australia. Journal of Vertebrate Paleontology, 14: 375–381. Google Scholar
  • 34. Hand, S. J., V. Weisbecker, R. M. D. Beck, M. Archer, H. Godthelp, A. J. D. Tennyson, and T. H. Worthy. 2009. Bats that walk: a new evolutionary hypothesis for the terrestrial behavior of New Zealand's endemic mystacinids. BMC Evolutionary Biology, 9: 1–13. Google Scholar
  • 35. Hasiotis, S. T. 2002. Continental trace fossils. SEPM Short Course Notes, 51: 1–132. Google Scholar
  • 36. Hasiotis, S. T. 2003. Complex ichnofossils of solitary to social soil organisms: understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeography, Palaeo climatology, Palaeoecology, 192: 259–320. Google Scholar
  • 37. Hasiotis, S. T. 2004. Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sedimentary Geology, 167: 177–268. Google Scholar
  • 38. Hasiotis, S. T. 2007. Continental ichnology: fundamental processes and controls on trace-fossil distribution. Pp. 268–284, in Trace fossils — concepts, problems, prospects ( W. Miller, III , ed.). Elsevier Press, Amsterdam, 611 pp. Google Scholar
  • 39. Hasiotis, S. T. 2008. Reply to the comments by Bromley et al. of the paper “Reconnaissance of the Upper Jurassic Mor rison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses” by Stephen T. Hasiotis. Sedimentary Geology, 208: 61–68. Google Scholar
  • 40. Hasiotis, S. T., and C. E. Mitchell. 1993. A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos, 2: 291–314. Google Scholar
  • 41. Hildebrand, M. 1980. The adaptive significance of tetrapod gait selection. American Zoologist, 20: 255–267. Google Scholar
  • 42. Hildebrand, M. 1985. Walking and running. Pp. 38–57, in Functional vertebrate morphology ( M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake, eds.). Belknap Press of Harvard University Press, Cambridge, 430 pp. Google Scholar
  • 43. Hildebrand, M. 1989. The quadrupedal gaits of vertebrates. BioScience, 39: 766–775. Google Scholar
  • 44. Hitchcock, E. 1858. Ichnology of New England. Commonwealth of Massachusetts, Boston, 220 pp. Google Scholar
  • 45. Howell, D. J., and J. Pylka. 1977. Why bats hang upside down: a biomechanical hypothesis. Journal of Theoretical Biology, 69: 625–631. Google Scholar
  • 46. Jepsen, G. L. 1966. Early Eocene bat from Wyoming. Science, 154: 1333–1339. Google Scholar
  • 47. Lawrence, M. J. 1969. Some observations on non-volant locomotion in vespertilionid bats. Journal of Zoology (London), 157: 309–317. Google Scholar
  • 48. Lockley, M. G., S. Y. Yang, M. Matsukawa, F. Fleming, and S. K. Lim. 1992. The track record of Mesozoic birds: evidence and implications. Philosophical Transactions of the Royal Society of London, 336B: 113–134. Google Scholar
  • 49. Lockley, M., T. S. Culver, and M. Wegweiser. 2007a. An ichnofauna of hopping rodent and arthropod trackways from the Miocene of Colorado. Pp. 59–66, in Cenozoic vertebrate tracks and traces ( S. G. Lucas, J. A. Spielmann, and M. G. Lockley, eds.). New Mexico Museum of Natural History and Science Bulletin, 42: 1–330. Google Scholar
  • 50. Lockley, M. G., R. LI, J. D. Harris, M. Matsukawa, and M. Liu. 2007b. Earliest zygodactyl bird feet: evidence from Early Cretaceous roadrunner-like tracks. Naturwissenschaften, 94: 657–665. Google Scholar
  • 51. Lockley, M., J. D. Harris, and L. Mitchell. 2008. A global overview of pterosaur ichnology: tracksite distribution in space and time. Zitteliana, 28: 185–198. Google Scholar
  • 52. Lockley, M., K. Chin, M. Matsukawa, and R. Kukihara. 2009. New interpretations of Ignotornis, the first-reported Mesozoic avian footprints: implications for the paleoecology and behavior of an enigmatic Cretaceous bird. Cretaceous Research, 30: 1041–1061. Google Scholar
  • 53. Marandat, B., J-Y. Crochet, M. Godinot, J-L. Harten Berger, S. Legendre, J. A. Remy, B. Sigé, J. Sudre, and M. Vianey-Liaud. 1993. Une nouvelle faune à mammifères d'âge Éocene moyen (Lutétien Supérieur) dans les phosphorites du Quercy. Geobios, 26: 617–623. Google Scholar
  • 54. McKee, E. D. 1947. Experiments on the development of tracks in fine cross-bedded sand. Journal of Sedimentary Petrology, 17: 23–28. Google Scholar
  • 55. Mein, P., and L. Ginsburg. 1997. Les mammifères du gisement miocène inférieur de Li Mae Long, Thaïlande: systématique, biostratigraphie et paléoenvironnement. Geo diversitas, 19: 783–844. Google Scholar
  • 56. Meredith, R. W., J. E. Janečka, J. Gatesy, O. A. Ryder, C. A. Fisher, E. C. Teeling, A. Goodbla, E. Eizirik, T. L. L. Simão, T. Stadler , et al. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science, 334: 521–524. Google Scholar
  • 57. Morgan, G. S., and N. J. Czaplewski. 2003. A new bat (Chiroptera: Natalidae) from the early Miocene of Florida, with comments on natalid phylogeny. Journal of Mammalogy, 84: 729–752. Google Scholar
  • 58. Morrissey, L. B., and S. J. Braddy. 2004. Terrestrial trace fossils from the Lower Old Red Sandstone, southwest Wales. Geological Journal, 39: 315–336. Google Scholar
  • 59. Narkiewicz, K., and M. Narkiewicz. 2015. The age of the oldest tetrapod tracks from Zachełmie, Poland. Lethaia Focus, 48: 10–12. Google Scholar
  • 60. Niedźwiedzki, G., P. Szrek, K. Narkiewicz, M. Narkiewicz, and P. E. Ahlberg. 2010. Tetrapod trackways from the early Middle Devonian period of Poland. Nature, 463: 43–48. Google Scholar
  • 61. O'leary, M. A., J. I. Bloch, J. J. Flynn, T. J. Gaudin, A. Gial Lombardo, N. P. Giannini, S. L. Goldberg, B. P. Kraatz, Z. Luo, J. Meng , et al. 2013. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science, 339: 662–667. Google Scholar
  • 62. Orr, R. T. 1954. Natural history of the pallid bat, Antrozous pallidus (Le Conte). Proceedings of the California Academy of Sciences, 28: 165–246. Google Scholar
  • 63. Patterson, B. D., and P. W. Webala. 2012. Keys to the bats (Mammalia: Chiroptera) of East Africa. Fieldiana: Life and Earth Sciences, 6: 1–60. Google Scholar
  • 64. Platt, B. F., S. T. Hasiotis, and D. R. Hirmas. 2012. Empirical determination of physical controls on megafaunal footprint formation through neoichnological experiments with elephants. PALAIOS, 27: 725–737. Google Scholar
  • 65. Ravel, A., L. Marivaux, R. Tabuce, M. Adaci, M. Mahboubi, F. Mebrouk, and M. Bensalah. 2011. The oldest African bat from the early Eocene of El Kohol (Algeria). Naturwissenschaften, 98: 397–405. Google Scholar
  • 66. Reise, D. J., S. T. Hasiotis, and G. Odier. 2011. Burrows excavated by mammals or therapsids in the Navajo Sandstone and their association with other organisms represented by trace fossils in a wet desert ecosystem. Journal of Sedimentary Research, 81: 299–325. Google Scholar
  • 67. Reynolds, R. E., and A. R. Milner. 2007. Preliminary description of mammal trackways from Middle Miocene (Late Barstovian NALMA) Enterprise Reservoir sediments in southwestern Utah. Pp. 261–266, in Cenozoic vertebrate tracks and traces ( S. G. Lucas, J. A. Spielmann, and M. G. Lockley, eds.). New Mexico Museum of Natural History and Science Bulletin, 42: 1–330. Google Scholar
  • 68. Riskin, D. K., and J. W. Hermanson. 2005. Independent evolution of running in vampire bats. Nature, 434: 292. Google Scholar
  • 69. Riskin, D. K., J. E. A. Bertram, and J. W. Hermanson. 2005. Testing the hindlimb-strength hypothesis: non-aerial locomotion by Chiroptera is not constrained by the dimensions of the femur or tibia. Journal of Experimental Biology, 208: 1309–1319. Google Scholar
  • 70. Riskin, D. K., S. Parsons, W. A. Schutt, Jr. , G. G. Carter, and J. W. Hermanson. 2006. Terrestrial locomotion of the New Zealand short-tailed bat Mystacina tuberculata and the common vampire bat Desmodus rotundus. Journal of Experi mental Biology, 209: 1725–1736. Google Scholar
  • 71. Schmerge, J. D., D. J. Reise, and S. T. Hasiotis. 2013. Vinegaroon (Arachnida: Thelyphonida: Thalyphonidae) trackway production and morphology: implications for media and moisture control on trackway morphology and a proposal for a novel system of interpreting arthropod trace fossils. PALAIOS, 28: 116–128. Google Scholar
  • 72. Schutt, W. A., Jr. , J. S. Altenbach, Y. H. Chang, D. M. Cullinane, J. W. Hermanson, F. Muradali, and J. E. A. Bertram. 1997. The dynamics of flight-initiating jumps in the common vampire bat Desmodus rotundus. Journal of Experimental Biology, 200: 3003–3012. Google Scholar
  • 73. Schutt, W. A., Jr. , and N. B. Simmons. 2006. Quadrupedal bats: form, function, and evolution. Pp. 145–159, in Functional and evolutionary ecology of bats ( A. Zubaid, G. F. McCracken, and T. H. Kunz, eds.). Oxford University Press, New York, xvi + 342 pp. Google Scholar
  • 74. Sige, B., H. Thomas, S. Sen, E. Gheerbrant, J. Roger, and Z. AL-Sulaimani. 1994. Les chiroptères de Taqah (Oligocène inférieur, Sultanat d'Oman): premier inventaire systematique. Münchner Geowissenschaftliche Abhandlungen, 26: 35–48. Google Scholar
  • 75. Simmons, N. B. 2005. Order Chiroptera. Pp. 312–529, in Mam mal species of the World: a taxonomic and geographic reference, 3rd edition ( D. E. Wilson and D. M. Reeder, eds.). Johns Hopkins University Press, Baltimore, 2142 pp. Google Scholar
  • 76. Simmons, N. B., K. L. Seymour, J. Habersetzer, and G. F. Gunnell. 2008. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature, 451: 818–822. Google Scholar
  • 77. Smith, J. J., and S. T. Hasiotis. 2008. Traces and burrowing behaviors of the cicada nymph Cicadetta calliope: Neo ichnology and paleoecological significance of extant soildwelling insects. PALAIOS, 23: 503–513. Google Scholar
  • 78. Smith, J. J., S. T. Hasiotis, M. J. Kraus, and D. Woody. 2008. Naktodemasis bowni: new ichnogenus and ichnospecies for Adhesive Meniscate Burrows (AMB), and paleoenvironmental implications, Paleogene Willwood Formation, Big horn Basin, Wyoming. Journal of Paleontology, 82: 267–278. Google Scholar
  • 79. Smith, T., R. S. Rana, P. Missiaen, K. D. Rose, A. Sahni, H. Singh, and L. Singh. 2007. High bat (Chiroptera) diversity in the Early Eocene of India. Naturwissenschaften, 94: 1003–1009. Google Scholar
  • 80. Srinivasulu, C., P. A. Racey, and S. Mistry. 2010. A key to the bats (Mammalia: Chiroptera) of South Asia. Journal of Threatened Taxa, 2: 1001–1076. Google Scholar
  • 81. Stokes, W. L. 1957. Pterodactyl tracks from the Morrison Formation. Journal of Paleontology, 31: 952–954. Google Scholar
  • 82. Storch, G., B. Sigé, and J. Habersetzer. 2002. Tachypteron franzeni n. gen., n. sp., earliest emballonurid bat from Middle Eocene of Messel (Mammalia, Chiroptera). Paläontologische Zeitschrift, 76: 189–199. Google Scholar
  • 83. Strickler, T. L. 1978. Functional osteology and myology of the shoulder in the Chiroptera. Pp. 1–198, in Contributions to vertebrate evolution. Volume 4 ( M. K. Hecht and F. S. Szalay, eds.). S. Karger, New York, ix + 198 pp. Google Scholar
  • 84. Tabuce, R., M. T. Antunes, and B. Sigé. 2009. A new primitive bat from the earliest Eocene of Europe. Journal of Vertebrate Paleontology, 29: 627–630. Google Scholar
  • 85. Tejedor, M. F., N. J. Czaplewski, F. J. Goin, and E. Aragón. 2005. The oldest record of South American bats. Journal of Vertebrate Paleontology, 25: 990–993. Google Scholar
  • 86. Timm, R. M., and R. K. Laval. 1998. A field key to the bats of Costa Rica. Occasional Publication Series, University of Kansas Center of Latin American Studies, 22: 1–30. Google Scholar
  • 87. Unwin, D. M. 1996. Pterosaur tracks and the terrestrial ability of pterosaurs. Lethaia, 29: 373–386. Google Scholar
  • 88. Vaughan, T. A. 1959. Functional morphology of three bats: Eumops, Myotis, Macrotus. University of Kansas Publications, Museum of Natural History, 12: 1–153. Google Scholar
  • 89. Vaughan, T. A. 1970. The skeletal system. Pp. 97–138, in Biology of bats. Volume 1 ( W. A. Wimsatt, ed.). Academic Press, New York, xii + 406 pp. Google Scholar
  • 90. Voigt, C. C., I. M. Borrisov, and S. L. Voigt-Heucke. 2012. Terrestrial locomotion imposes high metabolic requirements on bats. Journal of Experimental Biology, 215: 4340–4344. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-94a1cd9e-81b5-402f-a69e-5e3475a2fec6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.