PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 1 |

Tytuł artykułu

Response of fungi, beta-glucosidase, and arylsulfatase to soil contamination by Alister Grande 190 OD, Fuego 500 SC, and Lumax 537.5 SE herbicides

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper describes the response of fungi as well as β-glucosidase and arylsulfatase to soil contamination with the herbicides Alister Grande 190 OD, Fuego 500 SC, and Lumax 537.5 SE in the following doses: 1 – recommended dose, and doses 20-, 40-, 80-, and 160-fold higher than the recommended one. A laboratory experiment in three replicates was conducted on sandy loam of the pHKCl – 7.0. The results have indicated that counts of fungi increased under the influence of excessive quantities of the tested herbicides. Irrespective of herbicide type, EP decreased while CD increased at higher contamination doses. With respect to the enzymes, the herbicides were observed to have exerted a negative effect on the activity of arylsulfatase, which was verified by the negative correlation coefficients. However, the activity of β-glucosidase increased after the soil had been enriched with excessive amounts of the herbicides. The RS index for the activity of the enzymes varied, but reached the highest value in soil with Alister Grande 190 OD for both β-glucosidase (0.953) and arylsulfatase (0.567). The contamination of soil with the herbicides caused lasting changes in sandy loam, but the recovery of the enzyme β-glucosidase was faster (the average RL ranged from 0.458 to 0.889). The index of resilience for arylsulfatase was negative, which proves that the adverse effect of all the herbicides on this enzyme was growing.

Wydawca

-

Rocznik

Tom

23

Numer

1

Opis fizyczny

p.19-25,ref.

Twórcy

autor
  • Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
  • Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
autor
  • Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
autor
  • Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
autor
  • Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland

Bibliografia

  • 1. SINGH P., GHOSHAL N. Variation in total biological productivity and soil microbial biomass in rainfed agroecosystems: Impact of application of herbicide and soil amendments. Agric. Ecosyst. Environ. 137, 241, 2010.
  • 2. ARBELI Z., FUENTES C. L. Accelerated biodegradation of pesticides: An overview of the phenomenon, its basis and possible solutions and a discussion on the tropical dimension. Crop Protec. 26, 1733, 2007.
  • 3. DAS A. C., NAYEK H., CHAKRAVARTY A. Soil application of dinitroaniline and arylphenoxy propionic herbicides influences the activities of phosphate-solubilizing microorganisms in soil. Environ. Monit. Assess. 184, 7453, 2012.
  • 4. MILOŠEVIĆ N. A., GOVEDARICA M. M. Effect of herbicides on microbiological properties of soil. Proc. Nat. Sci. 102, 5, 2002.
  • 5. SHARMA P., SURI C. R. Biotransformation and biomonitoring of phenylurea herbicide diuron. Bioresour. Technol. 102, 3119, 2011.
  • 6. http://www.bayercropscience.pl.
  • 7. BENDING G. D., LINCOLN S. D., EDMONDSON R. N. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environ. Pollut. 139, 279, 2006.
  • 8. ADAMCZEWSKI K. Building up resistance of apera spicaventi by using for long-term sulfonyloureas herbicides. Fragm. Agron. 26, (2), 7, 2009 [In Polish].
  • 9. http://www.makhteshim-agan.pl
  • 10. MAMY L., GABRIELLE B., BARRIUSO E. Measurement and modeling of glyphosate fate compared with that of herbicides replaced as a result of the introduction of glyphosateresistant oilseed rape. Pest. Manag. Sci. 64, 262, 2008.
  • 11. http://www.syngenta.com.pl
  • 12. PILEGGI M., PILEGGI S. A. V., OLCHANHESKI L. R., DA SILVA P. A. G., MUNOZ GONZALEZ A. M., KOSKINEN W. C., BARBER B., SADOWSKY M. J. Isolation of mesotrione-degrading bacteria from aquatic environments in Brazil. Chemosphere, 86, 1127, 2012.
  • 13. SINGH N., KLOEPPEL H., KLEIN W. Movement of metolachlor and terbuthylazine in core and packed soil columns. Chemosphere, 47, 409, 2002.
  • 14. CABRERA A., COX L., VELARDE P., KOSKINEN W. C., CORNEJO J. Fate of diuron and terbuthylazine in soils amended with two-phase olive oil mill waste. J. Agric. Food Chem. 55, 4828, 2007.
  • 15. MARTIN J. Use of acid rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 69, 215, 1950.
  • 16. ALEF K., NANNIPIERI P. Methods in Applied Soil Microbiology and Biochemistry. Alef K., Nannipieri P. (Eds.), Academic Press. Harcourt Brace & Company, Publishers, London: 350, 1998.
  • 17. SARATHCHANDRA S. U., BURCH G., COX N. R. Growth patterns of bacterial communites in the rhizoplane and rhizosphere of with clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) in long-term pasture. Appl. Soil Ecol. 6, 293, 1997.
  • 18. DE LEIJ F. A. A. M., WHIPPS J. M., LYNCH J. M. The use of colony development for the characterization of bacterial communities in soil and on roots. Microb. Ecol. 27, 81, 1993.
  • 19. ORWIN K.H., WARDLE D.A. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem. 36, 1907, 2004.
  • 20. STATSOFT, INC, STATISTICA, 2010. Data Analysis Software System, version 9.1., <http://www.statsoft.com.>.
  • 21. BAĆMAGA M., BOROS E., KUCHARSKI J., WYSZKOWSKA J. Enzymatic activity in soil contaminated with the Aurora 40 WG herbicide. Environ. Protec. Eng. 38, (1), 91, 2012.
  • 22. CHOWDHURY A. PRADHAN S., SAHA M., SANYAL N. Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J. Microbiol. 48, 114, 2008.
  • 23. KUCHARSKI J., WYSZKOWSKA J. Biological properties of soil contaminated with the herbicide Apyros 75 WG. J. Elem. 13, (3), 357, 2008.
  • 24. ZABALOY M. C., GARLAND J. L., GOMEZ M. A. Assessment of the impact of 2,4-dichlorophenoxyacetic acid (2,4-D) on indigenous herbicide-degrading bacteria and microbial community function in an agricultural soil. App. Soil Ecol. 46, 240, 2010.
  • 25. CROUZET O., BATISSON I., BESSE-HOGGAN P., BONNEMOY F., BARDOT C., POLY F., BOHATIER J., MALLET C. Response of soil microbial communities to the herbicide mesotrione: A dose-effect microcosm approach. Soil Biol. Biochem. 42, 193, 2010.
  • 26. ARAÚJO A. S. F., MONTEIRO R. T. R., ABARKELI R. B. Effect of glyphosate on the microbial activity of two Brazilian soil. Chemosphere, 52, 799, 2003.
  • 27. MARTINEZ C. O., SILVA C. M. M. S., FAY E. F., MAIA A. H. N , ABAKERLI R. B., DURRANT L. R. Degradation of the herbicide sulfentrazone in a Brazilian typic hapludox soil. Soil Biol. Biochem. 40, 879, 2008.
  • 28. ROS M., GOBERNA M., MORENO J. L., HERNANDEZ T., GARCI´A C., INSAM H., PASCUAL J. A. Molecular and physiological bacterial diversity of a semi-arid soil contaminated with different levels of formulated atrazine. Appl. Soil Ecol. 34, 93, 2006.
  • 29. CYCOŃ M., PIOTROWSKA-SEGET Z. Changes in bacterial diversity and community structure following pesticides addition to soil estimated by cultivation technique. Ecotoxicol. 18, (5), 632, 2009.
  • 30. WANG Q., ZHOU D., CANG L. Microbial and enzyme properties of apple orchard soil as affected by long-term application of copper fungicide. Soil Biol. Biochem. 41, 1504, 2009.
  • 31. WYSZKOWSKA J. Effect of soil contamination with Treflan 480 EC on biochemical properties of soil. Pol. J. Environ. Stud. 11, (1), 71, 2002.
  • 32. SUKUL P. Enzymatic activities and microbial biomass in soil as influenced by metaxyl residues. Soil Biol. Biochem. 38, 320, 2006.
  • 33. KLOSE S., TABATABAI M. A. Arylsulfatase activity of microbial biomass in soils. Soil Sci. Soc. Am. J. 63, 569, 1999.
  • 34. LI X., SARAH P. Arylsulfatase activity of soil microbial biomass along a mediterranean-arid transect. Soil Biol. Biochem. 35, 925, 2003.
  • 35. ACOSTA-MARTI´NEZ V., ACOSTA-MERCADO D., SOTOMAYOR-RAMI´REZ D., CRUZ-RODRI´GUEZ L. Microbial communities and enzymatic activities under different management in semiarid soils. Appl. Soil Ecol. 38, 249, 2008.
  • 36. UZIAK S., STEINBRICH K. Further research into enzymatic activity of cultivated soils treated with herbicides. Pol. J. Soil Sci. 38, (2), 127, 2005.
  • 37. SOFO A., SCOPA A., DUMONTET S., MAZZATURA A., PASQUALE V. Toxic effects of four sulphonylureas herbicides on soil microbial biomass. J. Environ. Sci. Health, Part B. 47, 653, 2012.
  • 38. TEJADA M. Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate +diflufenican herbicides. Chemosphere, 76, 365, 2009.
  • 39. SAHA S., DUTTA D., KARMAKAR R., RAY D. P. Structure-toxicity relationship of chloroacetanilide herbicides: Relative impact on soil microorganisms. Environ. Toxicol. Pharmacol. 34, 307, 2012.
  • 40. PERUCCI P., VISCHETTI C., BATTISTONI F. Rimsulfuron in a silty clay loam soil: effects upon microbiological and biochemical properties under varying microcosm conditions. Soil Biol. Biochem. 31, 195, 1999.
  • 41. BE´CAERT V., SAMSON R., DESCHEˆNES L. Effect of 2,4-D contamination on soil functional stability evaluated using the relative soil stability index (RSSI). Chemosphere, 64, 1713, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-94506e1e-b9b5-47e2-bd53-190f933198c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.