PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 73 | 4 |

Tytuł artykułu

Effect of prenatal exposure to bisphenol a on the vagina of albino rats: immunohistochemical and ultrastructural study

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Bisphenol-A (BPA) is an industrial chemical, used to manufacture polycarbonate and numerous plastic articles. It has been found to cause biological effects, mimic that of oestrogen. It belongs to a group of chemicals termed “endocrine disruptors” able to disrupt the chemical messenger system in the body. Aim of the study was to demonstrate the biological effects of BPA on the vagina of female rats, with the prediction of the neoplastic changes in relation to its potential impact. Materials and methods: Sprague-Dawley gravid dams were divided into three groups (10 per group): G1 — control group had an equivalent volume of sesame oil to that taken in the treated groups, G2 — group was administered by gavage 0.1 mg BPA/kg body weight (low-dose group) per day, and G3 — group was administered 50 mg BPA/kg body weight (high-dose group) per day, dissolved in sesame oil. Treatment was carried out on gestation days 10 through 20. The female offsprings of each group were weaned at day 21 and the vagina was dissected when became 3 months old for histological, immunohistochemical analysis (for detection of oestrogen receptors α [ERα], and the proliferation marker Ki-67), and ultrastructural study. Results: The low dose group showed degeneration of the epithelial lining with focal patches of decreased epithelial layers. The high dose group revealed cytoplasmic hydropic degeneration, and the pyknotic nuclei of epithelial cells. Oestrogen receptors demonstrated a significant decrease of positive cells in low dose treated group and this decrease markedly accentuated in the high dose one. Positive nuclei for Ki-67 were markedly increased with increasing doses of BPA. Electron microscopic study revealed cytoplasmic degeneration, vacuolation and mitochondrial degeneration in both treated groups. Conclusions: BPA showed an obvious mix of degenerative and proliferative histological changes and clear damage of the cellular organelles. This stressful condition may predispose to neoplastic changes of the vagina. (Folia Morphol 2014; 73, 4: 399–408)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

73

Numer

4

Opis fizyczny

p.399-408,fig.,ref.

Twórcy

autor
  • Department of Histology and Anatomy, Faculty of Medicine, Cairo and King Saud University, Saudi Arabia
  • Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt
  • Department of Anatomy, Faculty of Medicine, Al Azhar and King Saud University, Riyadh, Saudi Arabia

Bibliografia

  • 1. Abargues MR, Ferrer J, Bouzas A, Seco A (2013) Removal and fate of endocrine disruptors chemicals under lab-scale postreatment stage. Removal assessment using light, oxygen and microalgae. Bioresour Technol, 149C: 142–148.
  • 2. Buchanan Dl, Kurita T, Taylor J, Lubahn D, Cunha G, Cooke V (1998) Role of stromal and epithelial estrogen receptors in vaginal epithelial proliferation, stratification and cornification. Endocrinol, 139: 4345–4352.
  • 3. Buchanan DL, Setiawan T, Lubahn DB, Taylor JA, Kurita T, Cunha GR, Cooke PS (1999) Tissue compartment-specific estrogen receptor: a participation in the mouse uterine epithelial secretory response. Endocrinology, 140: 484–491.
  • 4. Calafat AM, Ye Y, Wong LY, Reidy JA, Needham LL (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol. Environmental Health Perspectives, 116: 39–44.
  • 5. Cooke SP, Buchanan DL, Young P, Setlawan T, Brody J, Korach KS, Taylor J, Lubahn DB, Cunha GR (1997) Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc Natl Acad Sci USA, 94: 6535–6540.
  • 6. Dang VH, Choi KC, Jeung EB (2009) Estrogen receptors are involved in xenoestrogen induction of growth hormone in the rat pituitary gland. J Reprod Dev, 55: 206–213.
  • 7. Fung AD, Cohen C, Kavuri S, Lawson D, Gao X, Reid MD (2013) Phosphohistone h3 and Ki-67 labeling indices in cytologic specimens from well-differentiated neuroendocrine tumors of the gastrointestinal tract and pancreas: a comparative analysis using automated image cytometry. Acta Cytol, 57: 501–508.
  • 8. Gerdes J, Schwab U, Lemke H, Stein H (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer, 31: 13–20.
  • 9. Goldman TM, Murr AS, Cooper RL (2007) The rodent estrus cycle characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Res (Part B), 80: 84–97.
  • 10. Gray GM, Cohery JT, Cunha G, Hughes C, McConnell EE, Rhomberg L, Sipes IG Mattison D (2004) Weight of the evidence evaluation of low dose reproductive and developmental effects of bisphenol A. Human Ecolog Risk Assess, 10: 875–921.
  • 11. Hayat MA (2000) Principals and techniques of electron microscopy: biological application. 4th Ed. Cambridge University Press, Edinburgh, UK.
  • 12. Honma S, Suzuki A, Buchanan DL, Katsu Y, Watanabe H, Iguchi T (2002) Low dose effect of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod Toxicol, 16: 117–122.
  • 13. Khurana S, Ranmal S, Ben-Jonathan N. Exposure of newborn male and female rats to environmental estrogens (2000) delayed and sustained hyperprolactinemia and alterations in estrogen receptor expression. Endocrinology, 141: 4512–4517.
  • 14. Kim HS, Han SY, Yoo SD, Lee BM, Park KL (2001) Potential estrogenic effects of bisphenol-A estimated by in vitro and in vivo combination assays. J Toxicol Sci, 26: 111–118.
  • 15. Laws SC, Carey SA, Ferrell JM, Bodman GJ, Cooper RL (2000) Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicol Sci, 54: 154–167.
  • 16. Lazúrová Z, Lazúrová I (2013) The environmental estrogen bisphenol A and its effects on the human organism. Vnitr Lek, 59: 466–471.
  • 17. Loder N (2000) Royal society warns on hormone disrupters. Nature, 406: 4–15.
  • 18. MacLean AB, Nicol LA, Hodgins MB (1990) Immunohistochemical localization of estrogen receptors in the vulva and vagina. J Reprod Med, 35: 1015–1016.
  • 19. Maffini MV, Rubin BS, Sonnenschein C, Soto AM (2006) Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol, 254–255: 179–186.
  • 20. Markey CM, Wadia PR, Rubin BS, Sonnenschein C, Soto AM (2005) Long-term effects of fetal exposure to low doses of xenoestrogen bisphenol-A in the female mouse genital tract. Biol Reprod, 72: 1344–1351.
  • 21. Medlock KL, Branham WS, Sheehan DM (1992) Long-term effects of postnatal exposure to diethylstilbestrol on uterine estrogen receptor and growth. J Steroid Biochem Mol Biol, 42: 23–28.
  • 22. Moral R, Wang R, Russo I, Lamartiniere CA, Periera J, Russo J (2008) Effect of prenatal exposure to endocrine disruptor bisphenol A on mammary gland morphology and gene expression signature. J Endocrinol, 169: 101–112.
  • 23. Murray TJ, Maffini MV, Ucci AA, Sonnenschein C, Soto AM (2007) Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reprod Toxicol, 23: 383–390.
  • 24. Nnene IO, Nieto JJ, Crow JC (2004) Cell cycle and apoptotic proteins in relation to ovarian epithelial morphology. Gynecol Oncol, 92: 247–251.
  • 25. Petrie A, Sabin C (2005) Basic techniques for analysing data. In: Sugden M, Moore K eds. Medical Statistics at a Glance. 2nd Ed. Blackwell Publishing Ltd., USA, pp. 55–57.
  • 26. Raso MG, Behrens C, Herynk MH, Liu S, Prudkin L, Ozburn NC, Woods DM, Tang X, Mehran RJ, Moran C, Lee JJ, Wistuba II (2009) Immunohistochemical expression of estrogen and progesterone receptors identifies a subset of NSCLCs and correlates with EGFR mutation. Clin Cancer Res, 15: 5359–5368.
  • 27. Saggu SK, Chotaliya HP, Blumbergs PC, Casson RJ (2010) Wallerian-like axonal degeneration in the optic nerve after excitotoxic retinal insult: an ultrastructural study. BMC Neurosci, 11: 97–102.
  • 28. Schmidt S, Degen GH, Seibel J, Hertrampf T, Vollmer G, Diel P (2006) Hormonal activity of combinations of genistein, bisphenol A and 17beta-estradiol in the female Wistar rat. Arch Toxicol, 80: 839–845.
  • 29. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol, 182: 311–322.
  • 30. Schönfelder G, Flick B, Mayr E, Talsness C, Paul M, Chahoud I (2002) In utero exposure to low doses of bisphenol A lead to long-term deleterious effects in the vagina. Neoplasia, 4: 98–102.
  • 31. Schönfelder G, Friedrich K, Paul M, Chahoud I (2004) Developmental effects of prenatal exposure to bisphenol A on the uterus of rat offspring. Neoplasia, 6: 584–594.
  • 32. Stygar D, Muravitskaya N, Eriksson B, Eriksson H, Sahlin L (2003) Effects of SERM (selective oestrogen receptor modulator) treatment on growth and proliferation in the rat uterus. Reprod Biol Endocrinol, 1: 40–48.
  • 33. Suzuki A, Sugihara A, Uchida K, Sato T, Ohta Y, Katsu Y, Watanabe H, Iguchi T (2002) Developmental effects of perinatal exposure to bisphenol-A and diethylstilbestrol on reproductive organs in female mice. Reprod Toxicol, 16: 107–116.
  • 34. Takayanagi S, Tokunaga T, Liu X, Okada H, Matsushima A, Shimohigashi Y (2006) Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor gamma (ERRgamma) with high constitutive activity. Toxicol Lett, 167: 95–105.
  • 35. Tsutsui T, Tamura Y, Suzuki A, Hirose Y, Kobayashi M, Nishimura H (2000) Mammalian cell transformation and aneuploidy induced by five bisphenols. Int J Cancer, 86: 151–154.
  • 36. Urruticoechea A, Smith IE, Dowsett M (2005) Proliferation marker Ki-67 in early breast cancer. J Clin Oncol, 23: 7212–7220.
  • 37. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol, 24: 139–177.
  • 38. Varayoud J, Ramos JG, Bosquiazzo VL, Lower M, Muñozde-Toro M, Luque EH (2011) Neonatal exposure to bisphenol A alters rat uterine implantation-associated gene expression and reduces the number of implantation sites. Endocrinology, 152: 1101–1111.
  • 39. Wang H, Eriksson H, Sahlin L (2000) Estrogen receptors alpha and beta in the female reproductive tract of the rat during the estrous cycle. Biol Reprod, 63: 1331–1340.
  • 40. Washington W, Hubert L, Jones D, Gray WG (2001) Bispheno; a binds to low-affinity estrogen binding sites. In Vitro Mol Toxicol, 14: 43–51.
  • 41. Welshons WV, Nagel SC, vom Saal FS (2006) Large effects from small exposure. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology, 147 (6 suppl.): 556–569.
  • 42. Ye X, Pierik FH, Hauser R, Duty S, Angerer J, Park MM, Burdorf A, Hofman A, Jaddoe VW, Mackenbach JP, Steegers EA, Tiemeier H, Longnecker MP (2008) Urinary metabolite concentrations of organophosphorous pesticides, bisphenol A, and phthalates among pregnant women in Rotterdam, the Netherlands: the Generation R study. Environ Res, 108: 260–267.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-943db8ad-97bc-4042-8c82-e949ea2f0b77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.