PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 16 | 2 |

Tytuł artykułu

Identification of Propionibacteria to the species level using fourier transform infrared spectroscopy and artificial neural networks

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Fourier transform infrared spectroscopy (FTIR) and artificial neural networks (ANN’s) were used to identify species of Propionibacteria strains. The aim of the study was to improve the methodology to identify species of Propionibacteria strains, in which the differentiation index D, calculated based on Pearson’s correlation and cluster analyses were used to describe the correlation between the Fourier transform infrared spectra and bacteria as molecular systems brought unsatisfactory results. More advanced statistical methods of identification of the FTIR spectra with application of artificial neural networks (ANN’s) were used. In this experiment, the FTIR spectra of Propionibacteria strains stored in the library were used to develop artificial neural networks for their identification. Several multilayer perceptrons (MLP) and probabilistic neural networks (PNN) were tested. The practical value of selected artificial neural networks was assessed based on identification results of spectra of 9 reference strains and 28 isolates. To verify results of isolates identification, the PCR based method with the pairs of species-specific primers was used. The use of artificial neural networks in FTIR spectral analyses as the most advanced chemometric method supported correct identification of 93% bacteria of the genus Propionibacterium to the species level.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

2

Opis fizyczny

p.351-357,fig.,ref.

Twórcy

autor
  • Chair of Industrial and Food Microbiology, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10-957 Olsztyn, Poland

Bibliografia

  • Correa E, Goodacre R (2011) A genetic algorithm-Bayesian network approach for the analysis of metabolomics and spectroscopic data: application to the rapid identification of Bacillus spores and classification of Bacillus species. BMC Bioinformatics 12: 33.
  • Davis R, Mauer LJ (2010) Fourier transform infrared (FT-IR) spectroscopy: A rapid tool for detection and analysis of foodborne pathogenic bacteria. Appl Microbiol 1: 1582-1594.
  • Dobruchowska JM, Gerwig GJ, Babuchowski A, Kamerling JP (2008) Structural studies on exopolysaccharides produced by three different propionibacteria strains. Carbohydr Res 343: 726-745.
  • Dziuba B (2007) Identification of Lactobacillus strains at the species level using FTIR spectroscopy and artificial neural networks. Pol J Food Nutr Sci 57: 301-306.
  • Dziuba B, Babuchowski A, Nałęcz D, Niklewicz M (2007a) Identification of lactic acid bacteria using FTIR spectroscopy and cluster analysis. Inter Dairy J 17: 183-189.
  • Dziuba B, Babuchowski A, Niklewicz M (2007b) Identification of lactic acid bacteria using FTIR spectroscopy and artificial neural networks. Milchwissenschaft 62: 28-31.
  • Dziuba B, Nalepa B (2012) Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks. Food Technol Biotechnol 50: 399-405.
  • Goodacre R, Timmins EM, Burton R, Kaderbhal N, Woodward AM, Kell DB, Rooney PJ (1998) Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144: 1157-1170.
  • Gupta M, Irudayaraj J, Schmilovitch Z, Mizrach A (2006) Identification and quantification of foodborne pathogens in different food matrices using FTIR and artificial neural networks. ASABE 49: 1249-1256.
  • Mariey L, Signolle JP, Amiel C, Travert J (2001) Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vib Spectrosc 26: 151-159.
  • Mouwen DJ, Capita R, Alonso-Calleja C, Prieto-Gomez J, Prieto M (2006) Artificial neural network based identification of Campylobacter species by Fourier transform infrared spectroscopy. J Microbiol Methods 67: 131-140.
  • Naumann D, Helm D, Labischinski H (1991a) Microbiological Characterizations by FT-IR Spectroscopy. Nature 351: 81-82.
  • Naumann D, Labischinski H, Giesbrecht P (1991b) The Characterization of Microorganisms by Fourier-Transform Infrared Spectroscopy (FT-IR). In: Nelson WH (ed) Modern Techniques for Rapid Microbiological Analysis. VCH Publishers, New York, pp 43-96.
  • Rebuffo-Scheer CA, Schmitt J, Scherer S (2007) Differentiation of Listeria monocytogenes serovars by using artificial neural network analysis of Fourier-transformed infrared spectra. Appl Environ Microbiol 73: 1036-1040.
  • Schmitt J, Udelhoven D, Naumann D, Flemming HC (1998) Stacked spectral data processing and artificial neural networks applied to FT-IR and FT-Raman spectra in biomedical applications. Proc SPIE 3257: 236-244.
  • Tilsala-Timisjarvi A, Alatossava T (2001) Characterization of the 16S-23S and 23S-5S rRNA intergenic spacer regions of dairy propionibacteria and their identification with species-specific primers by PCR. Int J Food Microbiol 68: 45-52.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-942efc28-0294-448c-b274-03417a031f65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.