PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 2 |

Tytuł artykułu

Investigation of copper and manganese ion diffusion through hydrogel contact lens materials using ESR technique

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Diffusion of tear film components through a hydrogel contact lens is significantly influenced by its interactions with material. In our study Cu²⁺ and Mn²⁺ ions were used to describe transport properties of the membranes which were hydrogel contact lens materials. Ion concentrations were measured by an electron spin resonance (ESR) spectrometer, and differential scanning calorimetry (DSC) was used as a complementary technique. The materials investigated were nelfilcon A and etafilcon A. Diffusion D and permeation P coefficients were calculated. In both materials transport dynamics can be described by two stages (except for CuSO₄ in etafilcon A), where the first is shorter and characterized by higher diffusion D and permeation P coefficients than the second one. The results obtained allowed us to make conclusions about the interactions between the ions and polymer chains that may happen inside the hydrogel matrix during diffusion, affecting transport dynamics.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

2

Opis fizyczny

p.363-371,fig.,ref.

Twórcy

  • Division of Medical Physics, Department of Physics, A. Mickiewicz University in Poznan, Umultowska 85, 61-614 Poznan, Poland
  • Division of Medical Physics, Department of Physics, A. Mickiewicz University in Poznan, Umultowska 85, 61-614 Poznan, Poland
  • Division of Medical Physics, Department of Physics, A. Mickiewicz University in Poznan, Umultowska 85, 61-614 Poznan, Poland

Bibliografia

  • 1. PEPPAS N., HILT J., KHADEMHOSSEINI A. Hydrogels in Biology and Medicine: From Molecular Principles to Nanomedicine. Adv. Mater. 18, 1345, 2006.
  • 2. RATNER B., HOFFMAN A. Synthetic Hydrogles for Biomedical Applications in: ANDRADE J. Hydrogels for Medical and Related Applications. ACS Symposium Series 31, 1, 1976.
  • 3. LARNER B.L., SEEN A.J. Evaluation of paper-based diffusive gradients in thin film samplers for trace metal sampling. Anal. Chim. Acta 539, 349, 2005.
  • 4. GRAMO O.A., ROYSET O., STEINNES E., FLATEN T.P. Performance Study of Diffusive Gradients in Thin Films for 55 Elements. Anal. Chem. 75, 3573, 2003.
  • 5. EL-HAAG A., SHAWKY H.A., ABD EL REHIM H.A., HEGAZY E.A. Synthesis and characterization of VP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. Eur. Pol. J. 39, 2337, 2003.
  • 6. GARMO O.A., DAVIDSOM W., HANG H. Interactions of trace metals and filter membranes used in DET and DGT techniques. Environ. Sci. Technol. 42, 5682, 2008.
  • 7. SCALLY S., DAVIDSOM W., HANG H. Diffusion coefficients of metals and metal complexes in hydrogels used In diffusive gradients in thin films. Anal. Chim. Acta. 558, 222, 2006.
  • 8. BAYEN S., GUNKEL-GRILLON P., WORMS I., MARTIN M., BUFFLE J. Influence of inorganic complexes on the transport of trace metals through permeation liquid membrane. Anal. Chim. Acta. 646, 104, 2009.
  • 9. TRANOUDIS I., EFRON N. Water properties of soft contact lens materials. Contact Lens & Anterior Eye 27, 193, 2004.
  • 10. MIREJOVSKY D., PATEL A.S., RODRIGUEZ D.D. Effect of proteins on water and transport properties of various hydrogel contact lens materials. Cur. Eye Res. 10, (3), 187, 1991.
  • 11. CUSSLER I.L. Diffusion – mass transfer in fluid systems. Cambridge University Press: Cambridge 1984.
  • 12. MASSARO L., ZHU X.X. Physical models of diffusion for polymer solutions, gels and solids. Prog. Polym. Sci. 24, 731, 1999.
  • 13. WANG Y., TAN G., ZHANG S., GUANG Y. Influence of water states on the hydrogles on the transmissibility and permeability of oxygen in contact lens materials. Appl. Surf. Sci. 255, 604, 2008.
  • 14. PEDLEY D., TIGHE B. Water binding properties of hydrogel polymers for reverse osmosis and related applications. Brit. Pol. J. 11, 130, 1979.
  • 15. FDA, Medical Devices Database. 2011 Available from URL: http://accessdata.fda.gov/cdrh_docs/pdf7/K072777
  • 16. FDA, Medical Devices Database. 2011 Available from URL: http://accessdata.fda.gov/cdrh_docs/pdf6/K062614
  • 17. OZGUR E.E., AYDIN E., OZBEY T., IRKEC M., BOZKURT B., KAPTAN H.Y. Investigation of Liquid Diffusion into Contact Lenses Using an Electron Spin Resonance Technique. J. Appl. Polym. Sci. 100, 2942, 2006.
  • 18. OZGUR E.E., AYDIN E., OZBEY T., IRKEC M., BOZKURT B., KAPTAN H.Y. Investigation of Oxygen Diffusion into Contact Lenses Using an Electron Spin Resonance Technique. J. Appl. Polym. Sci. 100, 2937, 2006.
  • 19. KRYSZTOFIAK K., SZYCZEWSKI A., KRUCZYŃSKI Z. Copper ions in the research of transport dynamics through one-day hydrogel contact lenses. Optyka 5, 40, 2011 [In Polish].
  • 20. MORADI O., AGHAIE M., ZARE K., MONAJJEMI M., AGHAIE H. The study of adsorption characteristics Cu²⁺ and Pb²⁺ ions onto PHEMA and P(MMA-HEMA) surfaces from aqueous single solution. J. Hazard. Mater. 170, 673, 2009.
  • 21. SHARAF M., ARIDA A., SAYEDD S.A., YOUNIS A., FARAQ A. Separation and Preconcentration of Some Heavy-Metal Ions Using New Chelating Polymeric Hydrogels. J. Appl. Polym. Sci. 113, 1335, 2009.
  • 22. MARKUS Y. Thermodynamics of Solvation of Ions, Part. 5 – Gibbs Free Enregy of Hydration at 298.15K. J. Chem. Soc. Faraday Trans. 87, (18), 2995, 1991.
  • 23. LIU M., YAN X., LIU H., YU W. An investigation of the interaction between polivinylpyrrolidyne and metal cations. React. Funct. Polym. 44, 55, 2000.
  • 24. LIN H., ZHOU J., YINGDE C., GUNASEKARAN S. Synthesis and Characterization of pH- and Salt-Responsive Hydrogel Based on Etherificated Sodium Alginate. J. Appl. Polym. Sci. 115, 3161, 2010.
  • 25. RODRIGUEZ E., KATIMA I. Behavior of Acrylic Acid – Itaconic Acid Hydrogels in Swelling, Shrinking, and Uptakes of Some Metal Ions from Aqueous Solution,. J. Appl. Polym. Sci. 90, 530, 2003.
  • 26. LEBRUN L., VALLEE F., ALEXANDRE B., NGUYEN Q.T. Preparation of chelating membranes to remove metal cations from aqueous solutions. Desalination 207, 9, 2007.
  • 27. LAWTON J.S., BUDIL D.E. Investigation of Water and Methanol Sorption in Monovalent- and Multivalent-Ion-Exchanged Nafion Membranes Using Electron Spin Resonance. J.Phys.Chem. B 113, 10679, 2009.
  • 28. HUGLIN M.B., REGO J.M. Influence of a Salt on Some Properties of Hydrophilic Methacrylate Hydrogels. Macromolecules 24, 2556, 1991.
  • 29. MIREJOVSKY D., PATEL A.S., YOUNG G. Water properties of hydrogel contact lens materials: a possible predictive model for corneal desiccation staining. Biomaterials 14, (14), 1080, 1993.
  • 30. MALDONADO-CODINA C., EFRON N. An investigation of the discrete and continuum models of water behavior in hydrogel contact lenses. Eye & Contact Lens 31, (6), 270, 2005.
  • 31. WINTERTON L.C., LALLY J.M., SENTELL K.B., CHAPOY L.L. The Elution of Poly (vinyl alcohol) From a Contact Lens: The Realization of a Time Release Moisturizing Agent/Artificial Tear. J. Biomed. Mater. Res. B: Appl. Biomat. 80, (2), 424, 2007.
  • 32. LARENER B.L., SEEN A.J. Evaluation of paper-based diffusive gradients in thin film samplers for trace metal sampling. Anal. Chim. Acta 539, 349, 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-93e4c0bb-7228-4ca0-ba8b-5c32ae89a504
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.