PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 56 | 1 |

Tytuł artykułu

Mechano-sorptive creep of Portuguese pinewood chemically modified

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effect of chemical modification on mechano-sorptive creep in bending was studied by experimental work. Stakes with 20 × 20 × 400 mm RTL of Portuguese wood species (Pinus pinaster Aiton) modified with 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU), m-methylated melamine resin (MMF), tetraethoxysilane (TEOS) and amid wax (WA) were measured under asymmetric moistening conditions over a period of 42 days (app. 1000 hours) with stress level (SL) of 12 MPa, according to ENV 1156. The cell wall treatments (DMDHEU and MMF resins) had shown significant reduction of creep (creep factors, kc) when compared to untreated wood under similar conditions. Both types of resins and levels of treatments (different WPG) did not shown significant effects. In the lumen fill treatments, deposit material of TEOS did not affected the creep behaviour (kc); Wax treatment was shown a particular compliance of creep due to avoid exchange moisture (by the hydrophobic effect of wax). The anti-creep efficiency (ACE) correlated better than other mechanical or physical properties imparted by the modification process.

Wydawca

-

Rocznik

Tom

56

Numer

1

Opis fizyczny

p.30-44,fig.,ref.

Twórcy

autor
  • School of Engineering - Polytechnic of Porto, Rua Dr.Antonio Bernardino de Almeida 431, 4200-072 Porto, Portugal
autor
  • Wood Biology and Wood Products, Busgenweg 4 - 37077, Germany

Bibliografia

  • Bengtsson C. 2000. Creep of timber in different loading modes – material properties aspects. in The 7th World Conference on Timber Engineering, August 12–15, Shah Alam, Malaysia.
  • Bengtsson C. 2001. “Short-term” mechano-sorptive creep of well-defined spruce timber. Holz als Roh und Werkstoff, 59, 117–128.
  • Bollmus S., Dieste A., Militz H., Rademacher P. 2009. Properties of modified beechwood. Forst und Holz, 64 (7/8), 30–34.
  • DIN 52 185. 1976. Testing of wood: Compression test parallel to the grain. Deutsches Institut Für Normung e.V. Normen über Holz, Biegeversuch, Beuth, Berlin, September (in German).
  • DIN 52 186. 1978. Testing of wood; bending test. Deutsches Institut Für Normung e.V. Normen über Holz, Biegeversuch, Beuth, Berlin (in German).
  • DIN 52 188. 1979. Testing of wood: Determination of ultimate tensile stress parallel to grain. Deutsches Institut Für Normung e.V. Normen über Holz, Berlin, May (in German).
  • Dinwoodie J.M., Paxton B.H., Pierce C.B. 1981. Creep in Chipboard. Part 3: Initial Assessment of the Influence of Moisture Content and Level of Stressing on Rate of Creep and Time to Failure. Wood Science and Technology, 15, 125–144.
  • Dinwoodie J.M.W., Pierce C.B., Paxton B.H. 1984. Creep in chipboard. Part 4: The influence of temperature and moisture content on the creep behaviour of a range of boards at a single stress level. Wood Science and Technology, 18, 205–224.
  • Dinwoodie J.M., Higgins J.A., Paxton B.H., Robson D.J. 1990. Creep in chipboard. Part 7: Testing the efficacy of models on 7–10 years data and evaluating optimum period of prediction. Wood Science and Technology, 24, 181–189.
  • Dinwoodie J.M., Robson D.J., Paxton B.H., Higgins J.S. 1991a. Creep in chipboard. Part 8: The effect of steady-state moisture content, temperature and level of stressing on the relative creep behaviour and creep modulus of a range of boards. Wood Science and Technology, 25, 225–238.
  • Dinwoodie J.M., Paxton B.H., Higgins J.-A., Robson D.J. 1991b. Creep in chipboard. Part 10: The effect of variable climate on the creep behaviour of a range of chipboards and one wafer board. Wood Science and Technology, 26 (1), 39–51.
  • Dinwoodie J.M., Higgins J.-A., Paxton B.H., Robson D.J. 1992. Creep in chipboard. Part 11: The effect of cyclic changes in moisture content and temperature on the creep behaviour of a range of boards at different levels of stressing. Wood Science and Technology, 26 (6), 429–448, DOI 10.1007/BF00229247.
  • Donath S., Militz H., Mai C. 2004. Wood modification with alkoxys. Wood Science and Technology, 38, 555–566.
  • EN NP 408. 2003. Timber structures – Structural timber and glued laminated timber – Determination of some physical and mechanical properties. CEN Comité Européen de Normalisation, Bruxelles.
  • ENV 1156. 1999. Wood-based panels. Determination of duration of load and creep factors. CEN Comité Européen de Normalisation, Bruxelles.
  • Epmeier H. 2006. Moisture-related properties of modified timber – an experimental study. Ph.D. thesis, Chalmers tekniska högskola – Institutionen för byggoch miljöteknik, Chalmers, Sweden, N. serie, no. 2533.
  • Epmeier H., Westin M., Rapp A. 2004. Differently modified wood: Comparison of some selected properties. Scandinavian Journal of Forest Research, 19 (5), 31–37.
  • Epmeier H., Johansson M., Kliger R., Westin M. 2007. Bending creep performance of modified timber. Holz als Roh und Werkstoff, 65, 343–351.
  • Epmeier H., Kliger R. 2005. Experimental study of material properties of modified Scots pine. Holz als Roh- und Werkstoff, 63, 430–436.
  • Green D.W., Evans J.W. 2008. Effect of cyclic long-term temperature exposure on the bending strength of lumber. Wood and Fiber Science, 40 (2), 288–300.
  • Hanhijärvi A. 1999. Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying, part 2. Experimental results under constant conditions (visco elastic creep). Holz als Roh-und Werkstoff, 57, 365–372.
  • Hoffmeyer P., Davidson R.W. 1989. Mechano-sorptive creep mechanism of wood in compression and bending. Wood Science and Technology, 23 (3), 215–227.
  • Holzer S.M., Loferski J.R., Dillard D.A. 1989. A review of creep in wood: concepts relevant to develop longterm behaviour predictions for wood structures. Wood and Fiber Science, 21 (4), 376–392.
  • Homan W.J., Bongers F. 2004. Influence of up-scaling processes on degree and gradient of acetylation in Spruce and Beech. In: COST Action E22 (Hg.) Environmental Optimisation of Wood Protection. COST Action E22, Estoril, Portugal.
  • Hoyle R.J., Griffith M.C., Itani R.Y. 1985. Primary Creep in Douglas-Fir Beams of commercial size and quality. Wood and Fiber Science, 17 (3), 300–314.
  • Hunt D.G. 2004. The prediction of long-time viscoelastic creep from short-time data. Wood Science and Technology, 38, 479–492.
  • Hunt D.G., Shelton C.F. 1988. Longitudinal moistureshrinkage coefficients of softwood at the mechano-sorptive creep limit. Wood Science and Technology, 23, 323–333.
  • Logsdon N.B. 1998. Influência da umidade nas propriedades de resistência e rigidez da madeira. Ph.D. thesis, Escola de Engenharia de São Carlos – Universidade de São Paulo, São Carlos-Brasil (in Portuguese).
  • Lopes D.B., Mai C., Militz H. 2012. Mechanical Properties and Creep Performances of Chemical Modified Portuguese Wood. In: Proceedings of the 6th European Conference on Wood Modification, Ljubljana (eds.: D. Jones, H. Militz, M. Petric, F. Pohleven, M. Humar and M. Pavlic), 55–62.
  • Morlier P. 1994. Creep in timber structures: report of RILEM Technical Committee 112-TSC, P. Morlier, London: Spon.
  • Mai C., Xie Y., Xiao Z., Bollmus S., Vetter G., Krause A., Militz H. 2007. Influence of the modification with different aldehyde-based agents on the tensile strength. In: The Third European Conference on Wood Modification, Bangor, UK (eds.: C.A.S Hill, D. Jones, H. Militz, G.A. Ormondroyd), 49–56.
  • Militz H. 1993. Treatment of timber with water soluble dimethylol resins to improve their dimensional stability and durability. Wood Science and Technology, 27, 347–355.
  • Mohager S., Toratti T. 1993. Long term bending creep of wood in cyclic relative humidity. Wood Science and Technology, 27, 49–59.
  • Molinski W., Raczkowski J. 1988. Creep of wood in bending and non-symmetrical moistening. Holz als Roh- und Werkstoff, 46 (12), 457–460.
  • Norimoto M., Gril J., Rowell R.M. 1992. Rheological properties of chemically modified wood: relationship between dimensional and creep stability. Wood and Fiber Science, 24 (1), 25–35.
  • Pfeffer A.G. 2011. Effect of water glass, silane and DMDHEU treatment on the colonisation of wood by sapstaining fungi. Ph.D. thesis, Georg-August- Universitat Goettingen, Germany.
  • Instruction Manual Protimeter MMS Moisture Measurement System, 2005. INS5800A, October available 05-2011: http://www.ge-mcs.com/download/sensing-manuals/MMS-Instruction.pdf.
  • Ranta-Maunus A., Kortesmaa M. 2000. Creep of timber during eight years in natural environments. World Conference on Timber Engineering. Whistler, CA, 31 July–3 August, available 07-2010: http://www. vtt.fi/inf/pdf/jurelinkit/RTE_Ranta-Maunus3.pdf.
  • Roszyk E. 2005. Effect of bending stresses on the wood creep in conditions of asymmetric changes in moisture content. Folia Forestalia Polonica, Series B, 36, 15–26.
  • Rowell R.M. 1996. Physical and mechanical properties of chemically modified wood. In: Chemical modification of lingocellulosic materials (ed.: R.M. Rowell), Marcel Dekker, New York, 295–310.
  • Santos J.A. 2009. Estudo de modelos e caracterização do comportamento mecânico da madeira. Ph.D. thesis, Universidade do Minho, Guimarães-Portugal (in Portuguese).
  • Schniewind A.P. 1967. Creep-rupture life of Douglas-fir under cyclic environmental conditions. Wood Science and Technology, 1 (4), 278–288.
  • Schniewind A.P. 1968 Recent progress in the study of the theology of wood. Wood Science and Technology, 2, 188–206.
  • Scholz G., Krause A., Militz H. 2009. Capillary water uptake and mechanical properties of wax soaked Scots pine. In: The Fourth European Conference on Wood Modification. 4th European Conference on Wood Modification, Stockholm (eds.: F. Englund, C.A.S. Hill, H. Militz, B.K. Segerholm), 209–212.
  • Xie Y., Krause A., Militz H., Turkulin H., Richter K., Mai C. 2007 Effect of treatments with 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) on the tensile properties of wood. Holzforschung, 61, 43–50.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-93cafee7-2de5-44cf-a52b-7d5e3533ba18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.