PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 62 | 3 |

Tytuł artykułu

Exosomes in the context of Toxoplasma gondii - host communication

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Extracellular vesicles – EV’s, including exosomes, are known to be essential tools of intercellular communication, enabling the exchange of information without direct contact between cells. Exosomes are secreted both in vitro and in vivo by single- and multi-cellular organisms, regardless of their type, and play an essential role in cellto- cell communication. EV’s may carry various materials and ongoing studies have provided a new insight into their potential participation in various critical biological processes, including carcinogenesis, protein trafficking, immunostimulation and pathogenesis of infectious diseases. Although knowledge of the contribution of exosomes in Toxoplasma invasion is still very limited, the present article discusses aspects of their involvement in the interactions between host and T. gondii.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

62

Numer

3

Opis fizyczny

p.169–174,fig.,ref.

Twórcy

autor
  • Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
autor
  • Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland

Bibliografia

  • [1] Crescitelli R., Lässer C., Szabó T.G., Kittel A., Eldh M., Dianzani I., Buzás E.I., Lötvall J. 2013. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. Journal of Extracellular Vesicles 2: 20677.
  • [2] Schorey J.S., Bhatnagar S. 2008. Exosome function: from tumor immunology to pathogen biology. Traffic 9: 871-881.
  • [3] Coackley G., Maizels R.M., Buck A.H. 2015. Exosomes and other extracellular vesicles: the new communicators in parasite infection. Trends in Parasitology 31: 477-489.
  • [4] Damian R.T. 1997. Parasite immune evasion and exploitation: reflections and projections. Parasitology 115: S169-S175.
  • [5] Montoya J.G., Liesenfeld O. 2004. Toxoplasmosis. Lancet 363: 1965-1976.
  • [6] Flegr J., Zitková S., Kodym P., Frynta D. 1996. Induction of changes in human behaviour by the parasitic protozoan Toxoplasma gondii. Parasitology 113: 49-54.
  • [7] Flegr J. 2007. Effects of Toxoplasma on human behavior. Schizophrenia Bulletin 33: 757-60.
  • [8] Webster J.P. 2007. The effect of Toxoplasma gondii on animal behavior: playing cat and mouse. Schizophrenia Bulletin 33: 752-756.
  • [9] Gatkowska J., Wieczorek M., Dziadek B., Dzitko K., Dlugonska H. 2012. Behavioral changes in mice caused by Toxoplasma gondii invasion of brain. Parasitology Research 111: 53-58.
  • [10] Berdoy M., Webster J.P., Macdonald D.W. 2000. Fatal attraction in rats infected with Toxoplasma gondii. Proceedings. Biological sciences 267: 1591-1594.
  • [11] Vyas A., Kim S.K., Giacomini N., Boothroyd J.C., Sapolsky R.M. 2007. Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proceedings of the National Academy of Sciences of the United States of America 104: 6442-6447.
  • [12] Flegr J., Lenochová P., Hodný Z., Vondrová M. 2011. Fatal attraction phenomenon in humans: cat odour attractiveness increased for Toxoplasmainfected men while decreased for infected women. PLoS Neglected Tropical Diseases 5: e1389.
  • [13] Poirotte C., Kappeler P.M., Ngoubangoye B., Bourgeois S., Moussodji M., Charpentier M.J. 2016. Morbid attraction to leopard urine in Toxoplasmainfected chimpanzees. Current Biology 26: R98-99.
  • [14] Aline F., Bout D., Amigorena S., Roingeard P., Dimier-Poisson I. 2004. Toxoplasma gondii antigenpulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infection and Immunity 72: 4127-4137.
  • [15] Thery C., Duban L, Segura E., Veron P., Lantz O., Amigorena S. 2002. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nature Immunology 3: 1156-1162.
  • [16] Beauvillain C., Ruiz S., Guiton R., Bout D., Dimier-Poisson I. 2007. A vaccine based on exosomes secreted by a dendritic cell line confers protection against T. gondii infection in syngeneic and allogeneic mice. Microbes and Infection 9: 1614-1622.
  • [17] Beauvillain C., Juste M.O., Dion S., Pierre J., Dimier-Poisson I. 2009. Exosomes are an effective vaccine against congenital toxoplasmosis in mice. Vaccine 27: 1750-1757.
  • [18] Martínez-Gómez F., García-González L.F., Mondragón-Flores R., Bautista-Garfias C.R. 2009. Protection against Toxoplasma gondii brain cyst formation in mice immunized with Toxoplasma gondii cytoskeleton proteins and Lactobacillus casei as adjuvant. Veterinary Parasitology 160: 311-315.
  • [19] Pope S.M., Lässer C. 2013. Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation. Journal of Extracellular Vesicles 2: 22484.
  • [20] Canella D., Brenier-Pinchart M.-P., Braun L., van Rooyen J.M., Bougdour A., Bastien O., Behnke M.S., Curt R.-L., Curt A., Saeij J.P.J., Sibley D., Pelloux H., Hakimi M.-A. 2014. miR-1246A and miR-155 delineate a microRNA fingerprint associated with Toxoplasma persistence in the host brain. Cell Reports 6: 928-937.
  • [21] Bhatnagar S., Shinagawa K., Castellino F.J., Schorey J.S. 2007. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 110: 3234-3244.
  • [22] Silverman J.M., Reiner N.E. 2011. Exosomes and other microvesicles in infection biology: Organelles with unanticipated phenotypes. Cellular Microbiology 13: 1-9.
  • [23] Leroux L.-P., Dasanayake D., Rommereim L.M., Fox B.A., Bzik D.J., Jardim A., Dzierszinski F.S. 2015. Secreted Toxoplasma gondii molecules with expression of MHC-II in interferon gamma-activated macrophages. International Journal for Parasitology 45: 319-322.
  • [24] Torres M., Ducournau C., Dimier-Poisson I. 2012. Toxoplasma gondii: qualified to secrete exosomes? International Meeting of ISEV 2012 International Society for Extracellular Vesicles, Gothenburg, http://prodinra.inra.fr/record/188869.
  • [25] English E.D., Adomako-Ankomah Y., Boyle J.P. 2015. Secreted effectors in Toxoplasma gondii and related species: determinants of host range and pathogenesis? Parasite Immunology 37: 127-140.
  • [26] Hakimi M.-A., Bougdour A. 2015. Toxoplasma’s ways of manipulating the host transciptome via secreted effectors. Current Opinion in Microbiology 26: 24-31.
  • [27] Kim M.J., Jung B.K., Cho J., Song H., Pyo K.H., Lee J.M., Kim M.K., Chai J.Y. 2016. Exosomes secreted by Toxoplasma gondii-infected L6 cells: their effects on host cell proliferation and cell cycle changes. The Korean Journal of Parasitology 54: 147-154.
  • [28] Cherry A.A., Ananvoranich. 2014. Characterization of homolog of DEAD-box RNA helicases in Toxoplasma gondii as a marker of cytoplasmic mRNP stress granules. Gene 543: 34-44.
  • [29] Squadrito M.L., Baer C., Burdet F., Maderna C., Gilfillan G.D., Lyle R., Ibberson M., De Palma M. 2014. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Reports 8: 1432-1446.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-9385e2d0-cf0a-4515-8f9f-4cfc3bdac499
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.