PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 1 |

Tytuł artykułu

Milk proteines-derived bioactive peptides in dairy products: molecular, biological and methodological aspects

Autorzy

Warianty tytułu

PL
Poptydy bioaktywne pochodzące z białek mleka w produktach mleczarskich: aspekty molecularne, biologiczne i metodologiczne

Języki publikacji

EN

Abstrakty

EN
Proteins are one of the primary components of the food, both in terms of nutrition and function. They are main source of amino acids, essential for synthesis of proteins, and also source of energy. Additionally, many proteins exhibit specific biological activities, which may have effect on functional or pro-health properties of food products. These proteins and their hydrolysis products, peptides, may influence the properties of food and human organism. The number of commercially available food products containing bioactive peptides is very low, apart from that milk proteins are their rich source. It could be supposed that number of available products with declared activity will rise in near future because of observed strong uptrend on interest in such products. Molecular and biological properties of milk proteins, as precursors of bioactive peptides was characterised in the work. Therefore, the strategy of research and obtaining of such peptides both in laboralory and industrial scale, as well as the range of their commercial application, was presented. Several examples of research efforts presenting high potential to develop new products containing bioactive peptides from milk proteins and predetermined as nutraceuticals was described.
PL
Białka są jednym z podstawowych składników żywności, pod względem zarówno żywieniowym, jak i funkcjonalnym. Są źródłem energii, ale przede wszystkim aminokwasów niezbędnych do syntezy białek ustrojowych. Ponadto wiele białek wykazuje specyficzne aktywności biologiczne, które mogą kształtować funkcjonalne lub prozdrowotne właściwości produktów żywnościowych. Te białka i produkty ich hydrolizy (peptydy) mogą również wpływać na właściwości żywności oraz oddziaływać na organizm człowieka. Pomimo że białka mleka są bogatym źródłem peptydów bioaktywnych, niewielka jest liczba dostępnych, handlowych produktów spożywczych z peptydami bioaktywnymi. Obserwowany trend dynamicznego zainteresowania peptydami bioaktywnymi pozwala przypuszczać, że w niedalekiej przyszłości wzrośnie znacząco liczba dostępnych produktów z deklarowaną funkcjonalnością. W pracy scharakteryzowano molekularne oraz biologiczne właściwości białek mleka jako prekursorów peptydów bioaktywnych. Na tym tle przedstawiono strategię ich otrzymywania i badania na skalę zarówno laboratoryjną, jak i przemysłową oraz zakres ich przemysłowego zastosowania. Omówiono również przykłady badań wskazujących możliwości wykorzystania peptydów bioaktywnych, pochodzących z białek mleka, do produkcji nowych produktów, określanych jako nutraceutyki.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

13

Numer

1

Opis fizyczny

p.5-25,fig.,ref.

Twórcy

autor
  • Department od Industrial and Food Microbiology, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10-957 Olsztyn, Poland
autor
  • Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10-957 Olsztyn, Poland

Bibliografia

  • Adt I., Dupas C., Boutrou R., Oulahal N., Noel C., Molle D., Jouvet T., Degraeve R, 2011. Identification of caseinophosphopeptides generated through in vitro gastro- intestinal digestion of Beaufort cheese. Int. Dairy J. 21, 129-134.
  • Ahren B., Gomis R., Standl E., Mills D., Schweitzer A., 2004. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated pa- tients with type 2 diabetes. Diab. Care 27, 2874-2880.
  • Alexander L.J.., Stewart A.R, MacKinlay A.G., Kapelinskaya T.V., Tkach T.M., Gorodetsky S.I., 1988. Isolation and characterization of the bovine κ-casein gene. Eur. J. Biochem. 178, 395-401.
  • Antolovich M., Prenzler P., Patsalides E., McDonald S., Robards K., 2002. Methods for testing antioxidant activity. Analyst 127, 183-198.
  • Brignon G., Ribadeau-Dumas B., 1973. Localization of the Glu-Gln substitution diff erentiating B and D genetic variants in the peptide chain of bovine beta lactoglobu- lin. FEBS Lett. 33, 73- 76.
  • Brignon G., Ribadeu-Dumas B., Mercie J.-C., Pelissier J.P., Das B.C., 1977. Complete amino acid seąuence of bovine αs2-casein. FEBS Lett. 76, 274-279.
  • Butikofer U., Meyer J., Siebers R., Wechsler D., 2007. Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semi-hard and soft cheeses. Int. Dairy J. 17, 968-975.
  • Carrasco-Castilla J., Hemández-Álvarez A.J., Jiménez- -Martinez C., Gutiérrez-López G.F., DáviIa-Ortiz G., 2012. Use of proteomics and peptydomics methods in food bioactive peptide science and engineering. Food Eng. Rev. 4, 224-243.
  • Carter D.C., Flo J.X., 1994. Structure of serum albumin. Adv. Protein Chem. 45, 153-203.
  • Cavaletto M., Giuffrida M.G., Conti A., 2008. Milk fat globule membrane components - a proteomic approach. Adv. Experim. Med. Biol. 606, 129-141.
  • Chabance B., Marteau P., Rambaud J.C., Migliore-Samour D., Boynard M., Perrotin P., Guillet R., Jollès P., Fiat A.M., 1998. Casein peptide release and passage to the blood in humans during digestion of milk or yoghurt. Biochimie 80, 155-165
  • Christensen J.E., Dudley E.G., Pedersen J.A., Steele J.L., 1999. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76, 217-246.
  • Conti A.L., Napolitano L., Cantisani A.M., Davoli R., Dall'Olio S., 1988. Bovine ß-lactoglobulin FI: Isolation by preparative isoelectric focusing in immobilized pH gradients and preliminary characterization. J. Biochem. Biophys. Meth. 16, 205-214.
  • Dent M.P., O’Hagana S., Braun W.H., Schaetti P., Marburger A., Vogel O., 2007. A 90-day subchronic toxicity study and reproductive toxicity studiem on ACE inhibition of lactotri-peptide. Food Chem. Toxicol. 45, 1468-1477.
  • Dong C., Ng-Kwai-Hang K.F., 1998. Characterization of a non-electrophoretic genetic variant of ß-casein by peptide mapping and mass spectrometric analysis. Int. Dairy J. 8, 967-972.
  • Durrieu C., Degraeve P., Chappaz S., Martial-Gros A., 2006. Immunomodulating effects of water-soluble extracts of traditional French Alps cheese on a human T-lymphocyte celi line. Int. Daily J. 16, 1505-1514.
  • Dziuba J., 1986. Molecular and coloidal aspects of micellar casein structure. Post. Biochem. 32, 335-352
  • Dziuba J., 2005. Research strategy for proteins and bioactive peptides. In: Enzymatic modification of food components. Eds E. Kołakowski, W. Bednarski, S. Bielecki. Wyd. AR Szczecin, 219-237.
  • Dziuba J., Iwaniak A., Niklewicz M., 2003. Database of protein and bioactive peptide sequences - BIOPEP. [online], www.uwm.edu.pl/biochemia.
  • Dziuba J., Kostyra H., Dziuba M., 2012. Food biochemistry: (methods, assignments and tests). 1.15. Bioinformatic methods used in the study of bioactive proteins and peptides - database of bioactive proteins and peptides - BIOPEP. Wyd. UWM Olsztyn, 102-113.
  • Dziuba J., Minkiewicz P., Nałęcz D., Iwaniak A., 1999. Database of biologically active peptide seąuences. Nah- rung 43, 190-195.
  • Dziuba M., Darewicz M., 2007. Food proteins as precursors of bioactive peptides - division into families. Food Sci. Technol. Int. 13, 393-404.
  • Dziuba M., Dziuba B., 2009. In silico analysis of bioactive peptides. In: Bioactive proteins and peptides as funtional foods and nutraceuticals. Eds Y. Mine, E. Li-Chan, B.Jiang. Blackwell Publ. Inst. FoodTechn. 325-340.
  • Dziuba M., Dziuba B., Iwaniak A., 2009. Milk proteins as the source of bioactive peptides. Acta Sci. Pol., Techn. Aliment. 8, 71-90.
  • Dziuba M., Dziuba J., Minkiewicz P., 2006. Design of food protein proteolysis with a view to obtaining bioactive peptides. Pol. J. Natur. Sci. 21, 999-1020.
  • Eads T.M., 1994. Molecular origins of structure and func- tionality in foods. Trends Food Sci. Technol. 5,147-159.
  • Eigel W.N., Butler J.E., Ernstom C.A., Farrell H.M. Jr., Harwalkar V.R., Jenness J., Whitney R.M., 1984. Nomenclature of protein of cow’s milk: Fifth revision. J.Dairy Sci. 67, 1599-1631.
  • Expósito I.L., Recio I., 2006. Antibacterial activity of peptides and folding variants from milk proteins. Int. Dairy J. 16, 1294-1305.
  • Farrell H.M. Jr., Jimenez-Flores R., Bleck G.T., Brown E.M., Butler J.E., Creamer L.K., Hicks C.L., Hollar C.M., Ng-Kwai-Hang K.F., Swaisgood H.E., 2004. No- menclature of the proteins of cows’ milk - Sixth revision. J. Dairy Sci. 87, 1641-1674.
  • Ferranti P., Traisci M.V., Picariello G., Nasi A., Boschi V., Siervo M., Falconi C., Chianese L., Addeo F., 2004. Casein proteolysis in human milk: tracing the patiem ofcasein breakdown and the formation of potential bioactive peptides. J. Dairy Res. 71, 74-87.
  • FitzGerald R.J., Murray B.A., 2006. Bioactive peptides and lactic fermentations. Int. J. Dairy Technol. 59, 118-125.
  • FitzGerald R.J., Murray B.A., Walsh D.J., 2004. Hypotensive peptides from milk proteins. J. Nutr. 134, 980S-988S.
  • Fuller R., 1989. Probiotics in man and animals. J. Appl. Bacter. 66, 365-378.
  • Gagnaire V., Molle D., Herrouin M., Leonil J., 2001. Peptides identified during emmental cheese ripening: origin and proteolytic systems involved. J. Agric. Food Chem. 49, 407-412.
  • Gautier S.F., Pouliot Y., Saint-Sauveur D., 2006. Immu- nomodulatory peptides obtained by the enzymatic hydrolisis of whey proteins. Int. Dairy J. 16, 1315-1323.
  • Gobbetti M., Stepaniak L., De Angelis M., Corsetti A., Di- Cagno R., 2002. Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy Processing. Crit. Rev. Food Sci. Nutr. 42, 223-239.
  • Godovac-Zimmermann J., Krause I., Baranyi M., Fischer- -Frühholz S., Juszczak J., Erhardt G., Buchberger J., Klostermeyer H., 1996. Isolation and rapid sequence characterization of two novel bovine (3-lactoglobulins I and J. J. Protein Chem. 15, 743-750.
  • Godovac-Zimmermann J., Krause I., Buchberger J., Weiss G., Klostermeyer H., 1990. Genetic variants of bovine beta-lactoglobulin. A novel wild-type beta-lactoglobulin W and its primary sequence. Biol. Chem. Hoppe-Seyler 371, 255-260.
  • Grosclaude F., 1979. A genetic and biochemical analysis of a polymorphism of bovine αs2-casein. J. Dairy Res. 46, 211-213.
  • Grosclaude F., Mahe M.F., Mercie J.C., Ribadeu-Dumas B., 1972. Localization of amino acid substitutions diff erentiating the A and B variants of κ-casein in cattle. Ann. Genet. Sel. Anim. 4, 515-521.
  • Grosclaude F., Ribadeau-Dumas B., 1973. Structure primaire de la caseine αs1 et de la caseine β-bovine. Eur. J. Biochem. 40, 323-324.
  • Han S.K., Shin Y.C., Byun H.D., 2000. Biochemical, molecular and physiological characterization of a new β-casein variant detected in Korean cattle. Anim. Genet. 31,49-51.
  • Hansen M., Sandstrom B., Jansen M., Sórensen S.S., 1997. Effect of casein phosphopeptides on zinc and calcium absorption from bread meals. J. Trace Elem. Med., Biolog. 11, 143-149.
  • Hata Y., Yamamoto M., Ohni M., Nakajima K., Nakamura Y., Takano T., 1996. Aplacebo-controlled study of the effect of sour milk on blond pressure in hypertensive subjects. Am. J. Clin. Nutr. 64, 767-771.
  • Hemández-Ledesma B., Amigo L., Ramos M., Recio I., 2004. Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. J. Agricul. Food Chem. 52, 1504-1510.
  • Home D.S., 2006. Casein micelle structure: models and muddles. Curr. Opin. Coli. Interface Sci. 11, 148-153.
  • Iwaniak A., 2011. Analysis of relationships between yhe structure of peptides derived from food proteins and their activity to inhibit the angiotensin converting enzyme. Evaluation of suitability of the in silico methods in the research conceming protein precursors of bioactive peptides. Wyd. UWM Olsztyn, 1-151.
  • Jakob E., Puhan Z., 1992. Technological properties of milk as influenced by genetic polymorphism of milk proteins -A review. Int. Daily J. 2, 157-178.
  • Karadag A., Ozcelik B., Saner S., 2009. Review of methods to determine antioxidant capacities. Food Anal. Meth. 2,41-60.
  • Karelin A. A., Blishchenko E.Y., Ivanov V.T., 1998. Anovel system of peptidergic regulation. FEBS Lett. 428, 7-12.
  • Kasai T., Honda T., Kiriyama S., 1992. Caseinophosphopeptides (CPP) in faeces of rats fed casein diet. Biosci. Biotechn. Biochem. 56, 1150-1151.
  • Kilara A., Panyam D., 2003. Peptides from milk proteins and their properties. Cri. Rev. Food Sci. Nutr. 43, 607-633.
  • Korhonen H., Pihlanto A., 2003. Food-derived bioactive peptides - opportunities for designing futurę foods. Curr. Pharm. Design 9, 1297-1308.
  • Korhonen H., Pihlanto A., 2006. Bioactive peptides: Production and functionality. Int. Dairy J. 16, 945-960.
  • Korhonen H., Pihlanto A., 2007. Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Curr. Pharm. Des. 13,829-843.
  • Kuhn N.J., Carrick D.T., Wilde C.J., 1980. Lactose synthesis: Possibilities of regulation. J. Dairy Sci. 63, 328-336.
  • Kumosinski T.F., Brown E.M., Farrell H.M. Jr., 1993. Three-dimensional molecular modeling of bovine caseins: Energy minimized β-casein structure. J. Dairy Sci. 76, 931-945.
  • Langevin M-E., Roblet C., Moresowi C., Ramassamy C., Bazinet L., 2012. Comparative application of pressure- and electrically-driven membrane processes for isolation of bioactive peptides from soy protein hydrolysate. J. Membr. Sci. 403-404, 15-24.
  • Madureira A.R., Pereira C.I., Gomes A.M.P., Pentado M.E., 2007. Bovine whey proteins - Overview on their main biological properties. Food Res. Int. 40, 197-211.
  • Maeno M., Nakamura Y., Mennear J.H., Bernard B.K., 2005. Studies of the toxicological potential of tri-peptides (L- valyl-L-prolyl-L-proline and L-iso-leucyl-L-prolyl-L- proline): III. Single- and/or repeated-dose toxicity of tri-peptides-containing Lactobaqcillus Helvetius-fermented milk powder and casein hydrolysate in rats. Int. J. Toxicol. 24, S13-S23.
  • Mahè M.F., Grosclaude F., 1982. Polymorphisme de la caseine , des bovines: Characterization du variant C du yak (Bos grurmies). Ann. Genet. Sel. Anim. 14, 401-416.
  • Manso M.A., Leonii J., Jan G., Gagnaire V., 2005. Application of proteomics to the characterisation of milk and dairy products. Int. Dairy J. 15, 845-855.
  • Martinez M.J., Farias M.E., Pilosof A.M.R., 2010. The dynamice of heat gelation of casein glycomacropeptide - β-lactoglobulin mixtures as affected by interactions in the aąueous phase. Int. Dairy J. 20, 580-588.
  • Meisel H., Frister H., 1989. Chemical characterization of bioactive peptides from in vivo digests of casein. J. Dairy Res. 56, 343-349.
  • Meisel H., Goepfert A., Guenther S., 1997. ACE-inhibitory activities in milk products. Milchwissen. 52, 307-311.
  • Mercier J.C., Brignon G., Ribadeau-Dumas B., 1973. Structure primaire de la caseine kappa B bovine. Sequence complete. Eur. J. Biochem. 35, 222-235.
  • Mercier J.C., Grosclaude F., Ribadeau-Dumas B., 1971. Structure primaire de la caseine αs1 bovine. Sequence complete. Eur. J. Biochem. 4, 27-31.
  • Mils S., Ross R.P., Hill C., Fitzgerald G.F., Stanton C., 2011. Milk intelligence: Mining milk for bioactive substances associated with human Heath. Int. Dairy J. 21, 377-401.
  • Minkiewicz P., Dziuba J., 2009. Production of bioactive and functional peptides. In: Bioactive food proteins and peptides. Eds J. Dziuba, Ł. Fornal. WNT Warszawa, 110-140.
  • Minkiewicz P., Dziuba J., Iwaniak A., Dziuba M., Darewicz M., 2008. BIOPEP and other programs processing bioactive peptide sequences. J. AOAC Int. 91, 965-980.
  • Mizuno S., Mennear J.H., Matsuura K., Bernard B.K., 2005. Studies of the toxicological potential of tri-peptides (L-valyl-L-prolyl-L-proline and L-iso-leucyl- -L-prolyl-L-proline): V. A 13-week toxicity study of tri-peptides-containing casein hydrolysate in małe and female rats. Int. J. Toxicol. 24, S41-S59.
  • Mizushima S., Oshige K., Watanabe J., Kiura M., Kadowaki T., Nakamura Y., Tochikubo O., Ueshima H., 2004. Randomized controlled trial of sour milk on blond pressure in borderline hypertensive men. Am. J. Hypertens. 17, 701-706.
  • Moslehishad M., Ehsani M.R., Salami M., Mirdamadi S., Ezzatpanah H., Naslaji A.N., Moosavi-Movahedi A.A., 2013. The comparative assessment of ACE-inhibitory and antioxidant activities of peptide ffactions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC 1637. Int. Dairy J. 29, 82-87.
  • Najafian L., Babji A.S., 2012. A review of fish-derived antioxidant and antimicrobial peptides: their production, assessment and applications. Peptides 33,178-185.
  • Nakamura Y., Yamamoto N., Sakai K., Takano T., 1995. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin-I-converting enzyme. J. Dairy Sci. 78, 1253-1257.
  • Narai-Kanayama A., Shikata Y., Hosono M., Aso K., 2010. High level production of bioactive di- and tri-tyrosine peptides by protease-catalysed reactions. J. Biotechnol. 150, 343-347.
  • Nielsen M.S., Martinussen T., Flambard B., Sórensen K.I., Otte J., 2009. Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermentem milk products: effect of bacterial strain, fermentation pH, and storage time. Int. Dairy J. 19, 155-165.
  • Ortiz-Chao P., Gómez-Ruiz J.A., Rastall R.A., Mills D., Kramer R., Pihlanto A., Korhonen H., Jauregi R, 2009. Production of novel ACE inhibitory peptides from β-lactoglobulin Rusing Protease N Amano. Int. Dairy J. 19, 69-76.
  • Otte J., Lenhard T., Flambard B., Sórensen K.I., 2011. Influence of fermentation temperature and autolysis on ACE-inhibitory activity and peptide profile sof milk fermentem by selected strains of Lactobacillus hehelicus and Lactoccocus lactis. 21, 229-238.
  • Panchaud A., Affolter M., Kossmann M., 2012. Mass spektrometry for nutritional peptidomics: haw to analyze food bioactives and their health effects. J. Proteom. 75, 3546-3559.
  • Parodi P.W., 2007. A role for milk proteins and their peptides in cancer prevention. Cur. Pharm. Design 13, 813-828.
  • Parrot S., Degraeve R, Curia C., Martial-Gros A., 2003. In vitro study on digestion of peptides in Emmental cheese: analytical evaluation and influence on angiotensin-I-converting enzyme inhibitory peptides. Nahrung 47, 87-94.
  • Permyakov E.A., Berliner L.J., 2000. α-Lacalbumin: structure and function. FEBS Lett. 473, 269-274.
  • Phelan M., Aheme A., FitzGerald R.J., O’Brien N.M., 2009. Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J. 19, 643-654.
  • Rammer P., Groth-Pedersen L., Kirkegaard T., Daugaard M., Rytter A., Szyniarowski P., Hóyer-Hansen M., Povlsen L.K., Nylandsted J., Larsen J.E., Jäättelä M., 2010. BAMLET activates a lysosomal celi death program in cancer cells. Mol. Cancer Ther. 9, 24-32.
  • Reimer M.K., Horst J.J., Aare’n B., 2002. Long-term inhibition of dipeptydyl peptidase IV improves glucose tolerance and preserves islet function in mice. Eur. J. Endocrinol. 146, 717-727.
  • Reinhardt T.A., Lippolis J.D., 2008. DeveIopmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. J. Dairy Sci. 91, 2307-2318.
  • Roufik S., Gautier S.F., Turgeon S.L., 2006. In vitro digestibility of bioactive peptides derived from bovine ß-lactoglobulin. Int. Dairy J. 16, 294-302.
  • Saito T., Nakamura T., Kitazawa H., Kawai Y., Itoh T., 2000. Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J. Dairy Sci. 83, 1434-1440.
  • Sanlidere Algolu H., Ȍner Z., 2011. Determination of anti- oxidant activity of bioactive peptide fractions obtained from jogurt. J. Dairy Sci. 94 (11), 5305-5314.
  • Sepio L., Jauhiainen T., Pyssa T., Korpela R., 2003. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 77, 326-330.
  • Shimizu M., 2004. Food derived peptides and intestinal functions. BioFactors 21,43-47.
  • Simos Y., Metsios A., Verginadis I., D’Alessandro A.-G., Loiudice P., Jirillo E., Charalampidis P., Kouimanis V., Bulaka A., Martemucci G., Karkabounas S., 2011. Antioxidant and anti-platelet properties of milk from goat, donkey and cow: An in vitro, ex vivo and in vivo study. Int. Dairy J. 21, 901-906.
  • Spitsberg V.L., 2005. Bovine milk fat globule membrane as a potential neutraceutical. J. Dairy Sci. 88, 2289-2294.
  • Stanton C., Ross R.P., Fitzgerald G.F., Van Sindem D., 2005. fermentem functional foods based on probiotics and their biogenic metabolits. Curr. Opinion Biotechnol. 16, 198-203.
  • Stuknyte M., De Noni I., Gugliemetti S., Minuzzo M., Mora D., 2011. Potental immunomodulatory activity of bovine casein hydrolysates produced after digestion with proteinase of lactic acid bacteria. Int. Dairy J. 21, 763-769.
  • Sudre B., Broqua P., White R.B., Ashworth D., Evans D.M., Haigh R., Junien J.-L., Aubert M.L., 2002. Chronic inhibition of circulating dipeptidyl peptidase IV FE 999011 delays the occurrence of diabetes in male Zucker diabetic fatty rats. Diabetes 51, 1461-1469.
  • Svanborg C., Argestam H., Aronson A., Bjerkvig R., Duringcr C., 2003. HAMLET kills tumor cells by an apoptosis-like mechanism - cellular, molecular, and therapeu- tic aspects. Adv. CancerRes. 88, 1-29.
  • Svedberg J., de Haas J., Leimenstoll G., Paul F., Teschemacher H., 1985. Demonstration of β-casomorphin immunoreactive materials in vitro digests of bovine milk and in smali intestine contents after bovine milk ingestion in adull humans. Peptides 6, 825-830.
  • Swaisgood H.E., 1992. Chemistry of caseins. In: Advanced dairy chemistry - I. Proteins. Ed. P.F. Fox. Elsevier Appl. Sci. New York, 63-110.
  • Swaisgood H.E., 1982. Chemistry of milk proteins. In: Developments in Dairy Chemistry. Ed. P.F. Fox. Applied Sci. Publ. London, 1-59.
  • Tavares T.G., Contreras M.M., Amorim M., Martin-Alvarez P.J., Pentado M.E., Recio, I., Makata, F.X., 2011. Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein hydrolysates obtained with cardoon extract. Int. Dairy J. 21 (12), 926-933.
  • Thomä-Worringer C., Sórensen J., Fandiňo L., 2006. Health effects and technological features of caseino-macropeptide. Int. Dairy J. 16,1324-1333.
  • Uenishi H., Kabuki T., Seto Y., Serizawa A., Nakajima H., 2012. Isolation and Identification of casein-derived di- peptydyl-peptidase 4 (DPP-4)-inhibitory peptide LPQ- NIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int. Dairy J. 22, 24-30.
  • Vecruysse L., Smagghe G., Van Amerongen A., Ongenaert M., Van Camp J., 2009. Critical Evaluation on the use of bioinformatics as a theoretical tool to find high-po- tential sources of ACE inhibitory peptides. Peptides 30, 575-582.
  • Vermeirssen V., Van Camp J., Verstraete W., 2004. Bioavail- ability of angiotensin-I-converting enzyme inhibitor peptides. Br. J. Nutr. 92, 357-366.
  • Visser S. Slangen Ch.J., Lagerwert F.M., Van Dongen W.D., Haverkamp J., 1995. Identification of a new genetic variant of bovine ß-casein by reversed-phase highper- formance liquid chromatography and mass spectrometric analysis. J. Chromatogr. A, 711, 141-150.
  • Waugh D.F., 1971. Formation and structure of micelles. In: Milk proteins: chemistry and molecular biology. H.A. McKenzie. Academic Press, New York, 4-85.
  • Yamasaki Y., Maekawa K., 1978. A peptide with delicious taste. Agric. Biol. Chem. 42, 1761-1765.
  • Yasuda N., Inoue T., Nagakura T., Yamazaki K., Seaki T., Tanaka I., 2004. Metformin causes reduction of food intake and body weight gain and improvement of glucose intolerance in combination with dipeptidyl peptidase IV inhibitor in Zucker fa/fa rats. J. Pharmacol. Exp. Ther. 310,614-619.
  • Zimecki M., Kruzel M.L., 2007. Milk-derived proteins and peptides of potential therapeutic and nutritive value. J. Experim. Therap. Oncol. 6, 89-106.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-928b7c4d-4680-4ab7-aa48-95d99d47d5fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.