PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 71 | 08 |

Tytuł artykułu

Znaczenie procesów fotokatalitycznych TiO2/UV, ZnO/UV i MgO/UV w inaktywacji czynników zakaźnych

Warianty tytułu

EN
Importance of TiO2/UV, ZnO/UV and MgO/UV photocatalytic processes in the inactivation of infectious agents

Języki publikacji

PL

Abstrakty

EN
In hospitals, veterinary clinics and food processing plants, infectious agents have emerged that are increasingly resistant to applied drugs and disinfection procedures. Therefore, at present it is even more vital to develop and implement new, more effective methods of their inactivation. An example of the most recent solutions in this field is the application of photocatalysis. Among those processes of photocatalysis that have been most studied in the context of their ability to eradicate viruses, prions, bacteria and moulds are TiO₂/UV, ZnO/UV and MgO/UV, where, respectively, titanium dioxide (TiO₂), zinc oxide (ZnO) and magnesium oxide (MgO) are used as photocatalysts after they have been powdered into nanoparticles (NPs), whereby the ultraviolet radiation (UV) is used as an agent generating free radicals. Nano-sized oxides of titanium, zinc and magnesium are applied to create thin photocatalytic films covering various surfaces that thereby display self-disinfecting properties. The susceptibility of infectious agents to photocatalytic processes presents the following order: (viruses = prions) > gram-negative bacteria > gram-positive bacteria > yeasts > moulds. In the light of the most recent studies, photocatalysis seems to be a very promising tool to help overcome problems related to hygiene and public health protection.

Wydawca

-

Rocznik

Tom

71

Numer

08

Opis fizyczny

s.472-479,rys.,bibliogr.

Twórcy

autor
  • Katedra Higieny Żywności i Ochrony Zdrowia Publicznego, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
  • Katedra Higieny Żywności i Ochrony Zdrowia Publicznego, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
autor
  • Katedra Higieny Żywności i Ochrony Zdrowia Publicznego, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
  • Katedra Higieny Żywności i Ochrony Zdrowia Publicznego, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa

Bibliografia

  • 1. Akiba N., Hayakawa I., Keh E. S., Watanabe A.: Antifungal effects of a tissue conditioner coating agent with TiO₂ photocatalyst. J. Med. Dent. Sci. 2005, 52, 223-227.
  • 2. Azam A., Ahmed A. S., Oves M., Khan M. S., Habib S. S., Memic A.: Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int. J. Nanomed. 2012, 7, 6003-6009.
  • 3. Bonetta S., Bonetta S., Motta F., Strini A., Carraro E.: Photocatalytic bacterial inactivation by TiO₂-coated surfaces. AMB Express 2013, 3, 59.
  • 4. Calderón-Villagómez H. E., Thagarasu P., Carvajal M., Burillo G., Peña-Betancourt S. D.: Photo-degradation of fumonisins B1 and B2, toxins of the fungus Fusarium verticillioides (Sacc.) Nirenberg from corn (Zea mays L.), by ultraviolet radiation with titanium dioxide. Rev. Mex. Fitopatol. 2006, 23, 254-260.
  • 5. Chen F., Yang X., Wu Q.: Antifungal capability of TiO₂ coated film on moist wood. Build. Environ. 2009, 44, 1088-1093.
  • 6. Cho M., Cates E. L., Kim J. H.: Inactivation and surface interactions of MS-2 bacteriophage in a TiO₂ photoelectrocatalytic reactor. Water Res. 2011, 45, 2104-2110.
  • 7. Cho M., Chung H., Choi W., Yoon J.: Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO₂ photocatalytic disinfection. Appl. Environ. Microbiol. 2005, 71, 270-275.
  • 8. Chorianopoulos N. G., Tsoukleris D. S., Panagou E. Z., Falaras P., Nychas G. J.: Use of titanium dioxide (TiO₂) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiol. 2011, 28, 164-170.
  • 9. Colling J. H., Dunderdale J.: The durability of paint films containing titanium dioxide – contraction, erosion and clear layer theories. Prog. Org Coat. 1981, 9, 47-84.
  • 10. Day R. E.: The role of titanium dioxide pigments in the degradation and stabilization of polymers in plastics industry. Polym. Degrad. Stab. 1990, 21, 73-92.
  • 11. Deckers A. S., Loo S., L’Hermite M. M., Boime N. H., Menguy N., Reynaud C., Gouget B., Carrière M.: Size- composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes towards bacteria. Environ. Sci. Technol. 2009, 43, 8423-8429.
  • 12. Frazer L.: Titanium dioxide: environmental white knight? Environ. Health Perspect. 2001, 109, 174-177.
  • 13. Friedmann D., Mendive C., Bahnemann D.: TiO₂ for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B 2010, 99, 398-406.
  • 14. Fujishima A., Rao T. N., Tryk D. A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 2000, 1, 1-21.
  • 15. Gordon T., Perlstein B., Houbara O., Felner I., Banin E., Margel S.: Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. A 2011, 374, 1-8.
  • 16. Guarner F., Malagelada J. R.: Gut flora in health and disease. Lancet 2003, 361, 512-519.
  • 17. Guillard C., Bui T. H., Felix C., Moules V., Lina B., Lejeune P.: Microbiological disinfection of water and air by photocatalysis. C. R. Chim. 2008, 11, 107-113.
  • 18. Guo P., Yokoyama K., Piao F., Sakai K., Khalequzzaman M., Kamijima M., Nakajima T., Kitamura F.: Sick building syndrome by indoor air pollution in Dalian, China. Int. J. Environ. Res. Public Health 2013, 10, 1489-504.
  • 19. Gupta K., Singh R. P., Pandey A., Pandey A.: Photocatalytic antibacterial performance of TiO₂ and Ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein J. Nanotechnol. 2013, 4, 345-351.
  • 20. Haenle M., Fritsche A., Zietz C., Bader R., Heidenau F., Mittelmeier W., Gollwitzer H.: An extended spectrum bactericidal titanium dioxide (TiO2) coating for metallic implants: in vitro effectiveness against MRSA and mechanical properties. J. Mater. Sci.: Mater. Med. 2011, 22, 381-387.
  • 21. Hajkova P., Spatenka P., Horsky J., Horska I., Kolouch A.: Photocatalytic effect of TiO₂ films on viruses and bacteria. Plasma Process. Polym. 2007, 4, 397-401.
  • 22. Heaselgrave W., Patel N., Kilvingston S., Kehoe S. C., McGuigant K. G.: Solar disinfection of poliovirus and Acanthamoeba polyphaga cysts in water – a laboratory study using simulated sunlight. Lett. Appl. Microbiol. 2006, 43, 125-130.
  • 23. Hedin G., Rynbäck J., Loré B.: Reduction of bacterial surface contamination in the hospital environment by application of a new product with persistent effect. J. Hosp. Infect. 2010, 75, 112-115.
  • 24. Huang L., Li D. Q., Lin Y. J., Wei M., Evans D. G., Duan X.: Controllable preparation of nano-MgO and investigation of its bactericidal properties. J. Inorg. Biochem. 2005, 99, 986-993.
  • 25. Ishiguro H., Nakano R., Yao Y., Kajioka J., Fujishima A., Sunada K., Minoshima M., Hashimoto K., Kubota Y.: Photocatalytic inactivation of bacteriophages by TiO₂-coated glass plates under low-intensity, long-wavelength UV irradiation. Photochem. Photobiol. Sci. 2011, 10, 1825-1829.
  • 26. Jaroenworaluck A., Sunsaneeyametha W., Kosachan N., Stevens R.: Characteristics of silica-coated TiO₂ and its UV absorption for sunscreen cosmetic applications. Surf. Interface Anal. 2006, 38, 473-477.
  • 27. Jolley C., Klem M., Harrington R., Parise J., Douglas T.: Structure and photoelectrochemistry of a virus capsid-TiO₂ nanocomposite. Nanoscale 2011, 3, 1004-1007.
  • 28. Jones N., Ray B., Ranjit K. T., Manna A. C.: Antimicrobial activity of ZnO nanoparticles suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008, 279, 71-76.
  • 29. Kashige N., Kakita Y., Nakashima Y., Miake F., Watanabe K.: Mechanism of the photocatalytic inactivation of Lactobacillus casei phage PL-1 by titania thin film. Curr. Microbiol. 2001, 42, 184-189.
  • 30. Kiwi J., Nadtochenko V.: New evidence for TiO2 photocatalysis during bilayer lipid peroxidation. J. Phys. Chem. B 2004, 108, 17657-17684.
  • 31. Knight H.: Sars wars. Engineer 2003, 292, 27-35.
  • 32. Kühn K. P., Chaberny I. F., Massholder K., Stickler M., Benz V. W., Sonntag H. G., Erdinger L.: Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 2003, 53, 71-77.
  • 33. Lee J. E., Ko G.: Norovirus and MS2 inactivation kinetics of UV-A and UV-B with and without TiO₂. Water Res. 2013, 47, 5607-5613.
  • 34. Lee J. E., Zoh K., Ko G.: Inactivation and UV disinfection of murine norovirus with TiO₂ under various environmental conditions. Appl. Environ. Microbiol. 2008, 74, 2111-2117.
  • 35. Lonnen J., Kilvington L. J., Kehoe S. C., Al-Toutai F., McGuigan K. G.: Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res. 2005, 39, 877-883.
  • 36. Maneerat C., Hayata Y.: Antifungal activity of TiO₂ potocatalysis against Penicillium expansum in vitro and in fruit tests. Int. J. Food Microbiol. 2006, 107, 99-103.
  • 37. Matsunaga T., Tomoda R., Nakajima T., Wake H.: Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 1985, 29, 211-214.
  • 38. Mazurkova N. A., Spitsyna Y. E., Shikina N. V., Ismagilov Z. R., Zagrebel’nyi S. N., Ryabchikova E. I.: Interaction if titanium dioxide nanoparticles with Influenza virus. Nanotechnol. Russia 2010, 5, 417-420.
  • 39. Mitoraj D., Jańczyk A., Strus M., Kisch H., Stochel G., Heczko P. B., Macyk W.: Visible light inactivation of bacteria and fungi by modified titanium dioxide. Photochem. Photobiol. Sci. 2007, 6, 642-648.
  • 40. Molen R. G. van der, Garssen J., de Klerk A., Claaus F. H., Norval M., van Loveren H., Koerten H. K., Mommaas A. M.: Application of a systemic herpes simplex virus type 1 infection in the rat as a tool for sunscreen photoimmunoprotection studies. Photochem. Photobiol. Sci. 2002, 1, 592-596.
  • 41. Paspaltsis I., Kotta K., Lagoudaki R., Grigoriadis N., Poulios I., Sklaviadis T.: Titanium dioxide photocatalytic inactivation of prions. J. Gen. Virol. 2006, 87, 3125-3130.
  • 42. Pleskova S. N., Golubeva I. S., Verevkin I. K., Pershin E. A., Burenina V. N., Korolikhin V. V.: Photoinduced bactericidal activity of TiO2 films. Prikl. Biokhim. Mikrobiol. 2011, 47, 28-32.
  • 43. Robichaud C. O., Uyar A. E., Darby M. R., Zucker L. G., Wiesner M. R.: Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ. Sci. Technol. 2009, 43, 4227-4233.
  • 44. Sang X., Phan T. G., Sugihara S., Yagyu F., Okitsu S., Maneekarn N., Müller W. E., Ushijima H.: Photocatalytic inactivation of diarrheal viruses by visible-light-catalytic titanium dioxide. Clin. Lab. 2007, 53, 413-421.
  • 45. Sapkota A., Anceno A. J., Baruah S., Shipin O. V., Dutta J.: Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water. Nanotechnology. 2011, 22, 215-703.
  • 46. Savi G. D., Bortoluzzi A. J., Scussel V. M.: Antifungal properties of Zinccompounds against toxigenic fungi and mycotoxin. Int. J. Food Sci. Technol. 2013, 48, 1834-1840.
  • 47. Seven O., Dindar B., Aydemir S., Metin D., Ozinel A., Icli S.: Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO₂, ZnO and Sahara desert dust. J. Photochem. Photobiol. A 2004, 165, 103-107.
  • 48. Sichel C., Tello J., de Cara M., Fernãndez-Ibáñez P.: Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catal. Today 2007, 129, 152-160.
  • 49. Staniszewska M., Bondaryk M., Rabczenko D., Smoleńska-Sym G., Kurzatkowski W.: Cell wall carbohydrates content of pathogenic Candida albicans strain morphological forms. Exp. Med. Microbiol. 2013, 65, 119-128.
  • 50. Stoimenov P. K., Klinger R., Marchin G. L., Klabunde K. J.: Metal oxide nanoparticles as bactericidal agents. Langmuir 2002, 18, 6679-6686.
  • 51. Sui M., Zhang L., Sheng L., Huang S., She L.: Synthesis of ZnO coated multi-walled carbon nanotubes and their antibacterial activities. Sci. Total Environ. 2013, 452-453, 148-154.
  • 52. Sun D. D., Tay J. H., Tan K. M.: Photocatalytic degradation of E. coli form in water. Water Res. 2003, 37, 3452-3462.
  • 53. Suty H., de Traversay C., Cost M.: Applications of advanced oxidation processes: present and future. Water Sci. Technol. 2004, 49, 227-233.
  • 54. Wang G., He X., Xu G., Chen L., Zhu Y., Zhang X., Wang L.: Detection of T4 polynucleotide kinase activity with immobilization of TiO₂ nanotubes and amplification of Au nanoparticles. Biosens. Bioelectron. 2013, 43, 125-130.
  • 55. Wolfrum E. J., Huang J., Blake D. M., Maness P. C., Huang Z., Fiest J., Jacoby W. A.: Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environ. Sci. Technol. 2002, 36, 3412-3419.
  • 56. Xu R., Liu X., Zhang P., Ma H., Liu G., Xia Z.: The photodestruction of virus in nano-TiO₂ suspension. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2007, 22, 422-425.
  • 57. Yamamoto O.: Influence of particle size on the antimicrobial activity of zinc oxide. Int. J. Inorg. Mater. 2001, 3, 643-646.
  • 58. Yu K. P., Huang Y. T., Yang S. C.: The antifungal efficacy of nano-metals supported TiO₂ and ozone on the resistant Aspergillus niger spore. J. Hazard. Mater. 2013, 261, 155-162.
  • 59. Zan L., Fa W., Peng T., Gong Z. H.: Photocatalysis effect of nanometer TiO₂ and TiO₂-coated ceramic plate on Hepatitis B virus. J. Photochem. Photobiol. B 2007, 86, 165-169.
  • 60. Zhang I., Ding Y., Povey M., York D.: ZnO nanofluids – a potential antibacterial agent. Prog. Nat. Sci. 2008, 18, 939-944.
  • 61. Zhang K., An Y., Zhang L., Dong Q.: Preparation of controlled nano-MgO and investigation of its bactericidal properties. Chemosphere 2012, 89, 1414-1418.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-921905fd-7bc3-45d8-b180-f1a98cf114d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.