PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 30 | 5 |

Tytuł artykułu

Salt-imposed restrictions on the uptake of macroelements by roots of Arabidopsis thaliana

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this investigation was to identify the growth limiting factors in Arabidopsis thaliana subjected to a mild salt stress. Two natural accessions (Col and N1438) were compared. In spite of their morphological and developmental similarity, they have been previously shown to differ in the response of their superoxide dismutase genes to salt stress (Physiol Plant 132:293–305, 2008). Thirty-day-old seedlings were grown for 15 days using a split-root configuration in which the root system was divided into two equal parts: the first was immersed in a complete nutrient solution with 50 mM NaCl added, while the second part was immersed in either complete or incomplete K-, Ca-, or N-free medium. Using this approach, we demonstrated that K+ and Ca2+ uptake was impaired in the roots subjected to NaCl. There was no indication of the salt-induced inhibition of N uptake. If K+ or Ca2+ were available from salt-free medium, plants were able to grow at normal rate and accumulate large amounts of Na+ in the shoots. These results indicate that the sensitivity of Arabidopsis growth to mild salinity was probably due to an inhibition of K+ or Ca2+ root transport by salt rather than due to salt accumulation in shoots. Furthermore, the salt sensitivity of ion transport in roots seemed to depend on the genotype, since K+ was limiting for Col growth, in contrast to N1438, the growth of which was limited by Ca2+.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

30

Numer

5

Opis fizyczny

p.723-727,fig.,ref.

Twórcy

autor
  • Physiologie et Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia
autor
  • Physiologie et Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia
autor
  • Laboriatorie d'Adaptation des Plantes aux Stress Abiotiques, Centre de Biotechnologie de Borj-Cedria, Ecopark of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
autor
  • Physiologie et Biochimie de la Tolerance au Sel des Plantes, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia

Bibliografia

  • Attia H, Arnaud N, Karray N, Lachaal M (2008) Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression of Arabidopsis rosette leaves. Physiol Plant 132:293–305
  • Botella MA, Martinez V, Pardines J, Cerdá A (1997) Salinity-induced potassium deficiency in maize plants. J Plant Physiol 150:200–205
  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31:239–298
  • Cramer GR, Epstein E, Läuchli A (1989) Na–Ca interactions in barley seedlings: relationship to ion transport and growth. Plant Cell Environ 12:551–558
  • Ding L, Zhu JK (1997) Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant Physiol 113:795–799
  • Gay AP, Hauck B (1994) Acclimation of Lolium temulentum to enhanced carbon dioxide concentration. J Exp Bot 45:1133–1141
  • Grattan SR, Grieve CM (1992) Mineral element acquisition and growth response of plants grown in saline environments. Agric Ecosyst Environ 38:275–300
  • Grattan SR, Grieve CM (1999) Salinity–mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157
  • Greenway H, Munns R (1980) Mechanism of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190
  • Hu Y, Fricke W, Schmidhalter U (2005) Salinity and the growth of non-halophytic grass leaves: the role of mineral nutrient distribution. Funct Plant Biol 32:973–985
  • Kent LM, LäuchliA(1985) Germination and seedling growth of cotton: salinity–calcium interactions. Plant Cell Environ 8:155–159
  • Liu J, Zhu JK (1997) An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc Natl Acad Sci USA 94:14960–14964
  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133
  • Marschner H (1995) Mineral nutrition of higher plant. Academic Press, London, pp 889
  • Mühling KH, Läuchli A (2002) Effect of salt on growth and cation compartimentation in leaves of two plant species differing in salt tolerance. J Plant Physiol 159:137–146
  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250
  • Papadopoulos I, Rendig VV (1983) Interactive effects of salinity and nitrogen on growth and yield of tomato plants. Plant Soil 73:47–57
  • Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+–H+ antiporter during salinity stress. Plant Physiol 136:2548–2555
  • Silberbush M, Ben-Asher J (2001) Simulation study of nutrient uptake by plants from soilless cultures as affected by salinity build up and transpiration. Plant Soil 233:59–69
  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527
  • Wolf O, Jeschke WD (1986) Sodium fluxes, xylem transport of sodium, and K/Na selectivity in roots of Hordeum vulgare, cv. California mariout and H. distichon, cv. Villa. J Plant Physiol 125:243–256
  • Wu SJ, Lei Ding L, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisitı´on. Plant Cell 8:617–627
  • Yeo AR (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49:915–929
  • Zhu JK, Liu L, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191
  • Zidan I, Azaizeh H, Neumann PM (1990) Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? Plant Physiol 93:7–11
  • Zidan I, Jacoby B, Ravina I, Neumann PM (1991) Sodium does not compete with calcium in saturating plasma membrane sites regulating Na influx in salinized maize roots. Plant Physiol 96:331–334

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-918bfc1b-73b6-4639-85d1-3cca7d3c7d98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.