PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 583 |

Tytuł artykułu

Nadwrażliwość pokarmowa białek ryb

Treść / Zawartość

Warianty tytułu

EN
Fish proteins as an example of immunological food hypersensitivity

Języki publikacji

PL

Abstrakty

PL
Niepożądane reakcje organizmu człowieka związane ze spożyciem żywności to nietolerancje pokarmowe lub alergie. Immunologiczna odpowiedź organizmu na składniki żywności jest wywoływana przez wiele czynników. Alergia objawia się w postaci wielu niespecyficznych reakcji. Epitopy białek, odpowiadające za oddziaływania z przeciwciałami dzielimy na liniowe (ciągłe fragmenty łańcucha białkowego) i konformacyjne (reszty aminokwasowe sąsiadujące w wyniku tworzenia struktury drugo- i trzeciorzędowej). Białka posiadające epitopy o podobnej budowie mogą wykazywać reakcje krzyżowe. Wśród alergii pokarmowych ważne miejsce zajmuje immunologiczna nadwrażliwość pokarmowa na białka ryb. Stabilność termiczna białek ryb powoduje, że zachowują one właściwości alergenne pomimo stosowanych procesów technologicznych. Molekularne aspekty identyfikacji i charakterystyki alergenów pokarmowych, w tym alergenów ryb, są podstawą ich wykorzystania w praktyce klinicznej. W niniejszej pracy scharakteryzowano immunologiczną nadwrażliwość pokarmową na przykładzie białek ryb, molekularne aspekty alergennych białek ryb oraz wybrane metody ich identyfikacji.
EN
Food allergy concerns about 1-10% of the population. Adverse reactions of human organism, associated with food consumption, include nonallergic food hypersensi-tivities and food allergy. Many factors cause the human organism immunological response to food ingredients. Epitopes can be divided into linear and conformational. Proteins that are structurally related epitopes may exhibit cross-reactions. Allergy is manifested as many nonspecific reactions, for example: associated with the secretion of IgE and not associated with this process. Abdominal pain, diarrhoea, nausea, rhinitis, dyspnoeic attacks, tightness of the chest, angioedema, rash, urticaria are the examples of the symptoms of food allergy. Many factors associated with the foods processing can change food proteins allergenicity. These processes are related to: preparation of raw materials (e.g. washing, storage, slicing); thermal processing (e.g. drying, heating, cooling, freezing); biochemical treatment (e.g. fermentations); isolation and purification of food ingredients (e.g. centrifugation, extraction, distillation); extended expiration date (e.g. by the addition of alcohol, salt, sugar). The allergy to fish take an important place among food allergies. The prevalence of fish allergy is lower for children (up to 2% of affected children) than adults (5%). The thermal stability of fish proteins causes that they retain the allergenic properties despite the use of technological processes. The use of hydrolysis with proteolytic enzymes may reduce the allergenicity of fish proteins. For fish High Pressure Steaming (HPS) are the most effective method to reduce the possibility of binding of IgE antibodies. Then some patients with immunological fish hypersensitivity can consume canned salmon and tuna. Molecular aspects of the identification and characterization of food allergens, including fish allergens, are the basis for their use in clinical practice. Isolation, purification and identification of fragments responsible for allergies are continuously modified and improved. Bioinformatics and new analytical methods are important tools used for identification of food allergens. Combination of these methods creates additional opportunities for the identification and detection of markers of allergenic proteins responsible for immunological food hypersensitivity. Understanding the mechanisms of allergic reactions and molecular characterization of allergens are important to their diagnosis, therapeutic and prophylactic treatment. In our study we characterized immunological food hypersensitivities exemplified by fish protein, molecular aspects of allergenic fish proteins and selected methods of their identification.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

583

Opis fizyczny

s.23-34,tab.,bibliogr.

Twórcy

autor
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo
autor
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo
autor
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo

Bibliografia

  • Aas K., Elsayed S.M., 1969. Characterization of a major allergen (cod). Effect of enzymic hydrolysis on the allergenic activity. J. Allergy 44, 333-343.
  • Baagoe K.H., 1948. First Northern Congress ofAllergy. Allergy, 1, 123-126.
  • Bernhisel-Broadbent J., Scanlon S.M., Sampson H.A., 1992a. Fish hypersensitivity. I: In vitro and oral challenge results in fish-allergic patients. J. Allergy Clin. Immunol. 89, 730-737.
  • Bernhisel-Broadbent J., Strause D., Sampson H.A., 1992b. Fish hypersensitivity. II: Clinical revelance of altered fish allergenicity caused by various preparation methods. J. Allergy Clin. Immunol. 90, 622-629.
  • Besler M., 2001. Determination of allergens in foods. Trends Anal. Chem. 20(11), 662-672.
  • Bogh K.L., Madsen Ch.B., 2015. Food allergens: Is there a correlation beetwen stability to digestion and allergenicity? Crit. Rev. Food Sci. Nutr., DOI: 10.1080/10408398.2-13.779569.
  • Bredehorst R., David K., 2001. What establishes a protein as an allergen?; J. Chromatogr. B 756, 33-40.
  • Cianferoni A., Muraro A., 2012. Food-induced anaphylaxis. Immunol. Allergy Clin. North Am. 32, 165-195.
  • Ciesielska-Kopacz N., Rogala B., 2005. Alergia na ryby. Przegl. Alergol. 1, 27-29.
  • Darewicz M., Dziuba B., Minkiewicz P., Dziuba J., 2011. The preventive potential of milk and colostrum proteins and protein fragments. Food Rev. Int. 27, 357-388.
  • Das Dores S., Chopin C., Villaume C., Fleurence J., Gueant J.L., 2002. A new oligomeric parval-bumin allergen of Atlantic cod (Gad m I) encoded by a gene distinct from that of Gad c I. Allergy 57(0), 79-83.
  • Dziuba M., Minkiewicz P., Dąbek M., 2013. Peptides, specific proteolysis products as molecular markers of allergenic proteins - in silico studies; Acta Sci. Polon. Technol. Aliment. 12, 101-112.
  • Elsayed S., Bennich H., 1975. The primary structure of allergen M from cod. Scand. J. Immunol. 4, 203-208.
  • Elsayed S., Aas K., 1971. Characterisation of a major allergen (cod): observation on effect of dena-turation on the allergenic activity. J. Allergy Clin. Immunol. 47, 283-291.
  • Grabarek Z., 2006. Structural basis for diversity of the EF-hand calcium-binding proteins. J. Mol. Biol. 359, 509-525.
  • Griesmeier U., Bublin M., Radauer C., Vázquez-Cortes S., Ma Y., Fernández-Rivas M., Breite-neder H., 2010. Physicochemical properties and thermal stability of Lep w1, the major allergen of whiff. Mol. Nutr. Food Res. 54, 861-869.
  • Hansen T.K., Bindslev-Jensen C., 1992. Codfish allergy in adults. Identification and diagnosis. Allergy 47, 610-617.
  • Jeebhay M.F., Robins T.G., Lehrer S.B., Lopata A.L., 2001. Occupational seafood allergy: a review. Occup. Environ. Med. 58, 553-562.
  • Jędrychowski L., Wróblewska B., Szymkiewicz A., 2008. State of the art on food allergens - a review. Pol. J. Food Nutr. Sci. 58, 165-175.
  • Kanduc D., 2012. Homology, similarity, and identity in peptide epitope immunodefi nition. J. Pept. Sci. 18, 487-494.
  • Koeberl M., Clarke D., Lopata A.L., 2014. Next generation of food allergen quantification using mass spectrometric systems. J. Proteome Res. 13, 3499-3509.
  • Kosti R.I., Triga M., Tsabouri S., Priftis K.N., 2013. Food allergen selective thermal processing regimens may change oral tolerance in infancy. Allergol Immunopathol. 41 (6), 407-417.
  • Leung N.Y., Wai C.Y., Shu S., Wang J., Kenny T.P., Chu K.H., Leung P.S., 2014. Current im-munological and molecular biological perspectives on seafood allergy: a comprehensive review. Clin. Rev. Allergy Immunol. 46(3), 180-197.
  • Lindstrom C.D., van Do T., Hordvik I., Endresen C., Elsayed S., 1996. Cloning of two distinct cDNAs encoding parvalbumin, the major allergen of Atlantic salmon (Salmo salar). Scand. J. Immunol. 44(4), 335-344.
  • Liu G.M., Wang N., Cai QF, Li T., Sun L.C., Su W. J., Cao MJ., 2010. Purification and characterization of parvalbumins from silver carp (Hypophthalmichthy molitrix). J. Sci. Food Agric. 90(6), 1034-1040.
  • Liu R., Holck A.L., Yang E., Liu C., Xue W., 2013. Tropomyosin from tilapia (Oreochromis mos-sambicus) as an allergen. Clin. Exp. Allergy 43, 365-377.
  • Lopata A.L., Lehrer S.B., 2009. New insights into seafood allergy; Curr. Opin. Allergy Clin. Immunol. 9, 270-277.
  • Lopata A.L., O'Hehir R.E., Lehrer S.B., 2010. Shellfih allergy. Clin. Exp. Allergy. 40, 850-858.
  • Mari A., Rasi C., Palazzo P., Scala E., 2009. Allergen databases: current status and perspectives. Curr. Allergy Asthma Rep. 9, 376-383.
  • Michalska J., Minkiewicz P., Dziuba J., 2011. Fragmenty miozyn karpia i śledzia jako biomarkery występowania alergenów ryb. XL Konferencja Komitetu Nauk o Żywności PAN w Warszawie, Tradycja i Nowoczesność w Żywności i Żywieniu, 149.
  • Minkiewicz P., Dziuba J., Gładkowska-Balewicz I., 2011. Update of the list of allergenic proteins from milk based on local amino acid sequence identity with known epitopes from bovine milk proteins - a short report. Pol. J. Food Nutr. Sci. 61, 153-158.
  • Minkiewicz P., Sokołowska J., Darewicz M., 2015; The occurrence of sequences identical with epitopes from the Allergen Pen a 1.0102 among food and non-food proteins. Pol. J. Food Nutr. Sci. 65 (1), 21-29.
  • Mondal G., Chatterjee U., Samanta S., Chatterjee B.P., 2007. Role of pepsin in modifying the aller-genicity of bhetki (Lates calcarifer) and mackerel (Rastrelliger kanagurta) fish. Indian J. Biochem. Biophys. 44, 94-100.
  • Mygind N., Dahl R., Pedersen S., Thestrup-Pederdsen K., 1998. Alergologia. Wyd. Medyczne Urban & Partner.
  • Nomura I., Morita H., Hosokawa S., Hoshina H., Fukuie T., Watanabe M., Ohtsuka Y., Shoda T., Terada A., Takamasu T., Arai K., Ito Y., Ohya Y., Saito H., Matsumoto K., 2011. Four distinct subtypes of non-IgE-mediated gastrointestinal food allergies in neonates and infants, distinguished by their initial symptoms. J. Allergy Clin. Immunol. 127(3), 685-688.
  • Pérez-Gordo M., Cuesta-Herranz J., Maroto A.S., Cases B., Ibáňez D., Vivanco F., Pastor-Vargas C. 2011. Identification of sole parvalbumin as a major allergen: study of cross-reactivity between parvalbumins in a Spanish fish-allergic population. Clin. Exp. Allergy 41, 750-758.
  • Radauer C., Bublin M., Wagner S., Mari A., Breiteneder H., 2008. Allergens are distributed into few protein families and posses a restricted number of biochemical functions. J. Allergy Clin. Immunol. 121, 847-852.
  • Rance F., Kanny G., Dutau G., Moneret-Vautrin D.A., 1999. Food hypersensitivity in children: clinical aspects and distribution of allergens. Pediatr. Allergy Immunol. 10, 33-38.
  • Sampson H.A. 2004. Upadate on food allergy. J. Allergy Clin. Immunol. 113, 805-819.
  • Sánchez-Monge R., Salcedo G., 2005. Analytical methodology for assessment of food allergens: Opportunities and challenges. Biotechnol. Adv. 23, 415-422.
  • Sharp M.F., Lopata A.L., 2014. Fish allergy - in review. Clin. Rev. Allergy Immunol. 46, 258-271.
  • Shevchenko A., Valcu C.M., Junqueira M., 2009. Tools for exploring the proteomosphere. J. Pro-teomics 72, 137-144.
  • Shibahara Y., Uesaka Y., Wang J., Yamada S., Shiomi K., 2013. A sensitive enzyme-linked immu-nosorbent assay for the determination of fish protein in processed foods; Food Chem. 136(2), 675-681.
  • Sletten G., Van Do T., Lindvik H., Egaas E., Florvaag E., 2010. Effects of industrial processing on the immunogenicity of commonly ingested fish species. Int. Arch. Allergy Immunol. 151, 223-236.
  • Swoboda I., Bugajska-Schretter A., Verdino P., Keller W., Sperr W.R., Valent P., Valenta R., Spitzauer S., 2002. Recombinant carp parvalbumin, the major cross-reactive fish allergen: a tool for diagnosis and therapy of fish allergy. J. Immunol. 168(9), 4576-4584.
  • Swoboda I., Balic N., Klug C., Focke M., Weber M., Spitzauer S., Neubauer A., Quirce S., Dou-ladiris N., Papadopoulos N.G., Valenta R., 2013. A general strategy for the generation of hypoallergenic molecules for the immunotherapy of fish allergy. J. Allergy Clin. Immunol. 132(4), 979-981.
  • The UniProt Consortium, 2015. UniProt: a hub for protein information. Nucl. Acids Res. 43, D204-D212.
  • Tomar N., De R.K., 2010. Immunoinformatics: An integrated scenario. Immunology 131, 153-168.
  • Tong J.C., Ren E.C., 2009. Immunoinformatics: current trends and future directions. Drug Discov. Today 14, 684-689.
  • Turner P., Ng I., Kemp A., Campbell D., 2011. Seafood allergy in children: a descriptive study. Ann. Allergy Asthma Immunol. 106, 494-501.
  • Untersmayr E., Vestergaard H., Malling H.-J., Jensen LB, Platzer MH, Boltz-Nitulescu G, Scheiner O., Skov P.S., Jensen-Jarolim E., Poulsen L.K., 2007. Incomplete digestion of codfish represents a risk factor for anaphylaxis in patients with allergy. J. Allergy Clin. Immunol. 119, 711-717.
  • Untersmayr E., Szalai K., Riemer A.B., Hemmer W., Swoboda I., Hantusch B., Schöll I., Spitzauer S., Scheiner O., Jarisch R., Boltz-Nitulescu G., Jensen-Jarolim E., 2006. Mimotopes identify conformational epitopes on parvalbumin, the major fish allergen; Mol. Immunol. 43, 1454-1461.
  • Wróblewska B., 2002. Wielka ósemka alergenów pokarmowych. Alergia 4/15, 1-7.
  • Wróblewska B., Szymkiewicz A., Jędrychowski L., 2007. Wpływ procesów technologicznych na zmiany alergenności żywności. ŻNTJ 6(55), 7-19.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-914439c9-e2a2-4628-af54-7d709e337955
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.