Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |
Tytuł artykułu

Effects of different parameters on photocatalytic oxidation of slaughterhouse wastewater using TiO2 and silve-doped TiO2 nanoparticles

Warianty tytułu
Języki publikacji
Our study used a photocatalytic oxidation process for degrading slaughterhouse wastewater (SHWW). Characterization of the wastewater before and after treatment with TiO₂ and Ag-TiO₂ in terms of BOD, COD, and nitrogen was done. The effect of hydrogen peroxide, ozone, and various operating parameters such as catalyst dose, pH, and reaction time on the degradation efficiency of the process were also investigated. An increase in catalyst dose and reaction time increased process efficiency. However, process efficiency was decreased with elevating pH. The results also revealed that the type of catalyst and their operating parameters have significant influence on the oxidation of SHWW. Ag-TiO₂ -H₂O₂ catalyst under UV (400watt) irradiation was found to be best for the degradation of SHWW and resulted in 95% BOD, 87% COD, and 74% nitrogen removal.
Słowa kluczowe
Opis fizyczny
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
  • Institute of Geology, University of the Punjab, Lahore, Pakistan
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
  • College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
  • 1. BUSTILLO-LECOMPTE C., MEHRVAR M. Slaughterhouse Wastewater: Treatment, Management and Resource Recovery. Physico-Chemical Wastewater Treatment and Resource Recovery. Farooq R., Ahmad Z. Prof. Robina Farooq (Eds.), InTech: London, United Kingdom, 153, 2017.
  • 2. KUNDU P., DEBSARKAR A., MUKHERJEE S. Treatment of Slaughter House Wastewater in a Sequencing Batch Reactor: Performance Evaluation and Biodegradation Kinetics. Bio. Med. Res. Inter. 11, 2013.
  • 3. KOECH H.K., OGENDI G.M., KIPKEMBOI J. Status of Treated Slaughter-House Efluent and its Effects on the Physico-Chemical Characteristics of Surface Water in Kavuthi Stream, Dagoretti-Kenya, Res. J. Environ. Ear. Sci. 4 (8), 789, 2012.
  • 4. MUHIRWA D., NHAPI I., WALI U., BANADDA N., KASHAIGILI J., KIMWAGA R. Characterization of wastewater from an abattoir in Rwanda and the impact on downstream water quality, Inter. J. Ecol. Develop. 16 (10), 30, 2010.
  • 5. WHITTLE I.H.F., INSAM H. Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: A review. Crit. Rev. Microbiol. 39 (2), 139, 2012.
  • 6. SALMINEN E., RINTALA J. Anaerobic digestion of organic solid poultry slaughterhouse waste – a review. Bio. Res. Technol. 83 (1), 13, 2002.
  • 7. HICKEY A.J., GANDERTON D. Pharmaceutical Process Engineering (2nd ed.), Informa Healthcare, New York, 236, 2010.
  • 8. SHON H., VIGNESWARAN S., KANDASAMY J., ZAREIE M., KIM J., CHO D., KIM J.H. Preparation and characterization of titanium dioxide (TiO₂) from sludge produced by TiCl4 flocculation with FeCl₃, Al₂(SO₄)₃ and Ca(OH)₂ coagulant aids in wastewater. Sep. Sci. Technol. 44 (7), 1525, 2009.
  • 9. KUNDU P., DEBSARKAR A., MUKHERJEE S., KUMAR S. Artificial neural network modelling in biological removal of organic carbon and nitrogen for the treatment of slaughterhouse wastewater in a batch reactor. Environ. Technol. 35 (10), 1296, 2014.
  • 10. DEL NERY V., DAMIANOVIC M.H.Z., POZZI E., DE NARDI I.R., CALDAS V.E.A., PIRES E.C. Longterm performance and operational strategies of a poultry slaughterhouse waste stabilization pond system in a tropical climate. Res. Conser. Recycl. 71, 7, 2013.
  • 11. CESARO A., NADDEO V., BELGIORNO V. Wastewater Treatment by Combination of Advanced Oxidation Processes and Conventional Biological Systems. Bioremed Biodeg, 4 (8), 100, 2013.
  • 12. OLLER I., MALATO S., SANCHEZ J.A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Sci. Total Environ. 409 (20), 4141, 2011.
  • 13. ZAPATA A., OLLER I., RIZZO L., HILGERT S., MALDONADO M.I., SÁNCHEZ-PÉREZ J.A. Evaluation of operating parameters involved in solar photo-Fenton treatment of wastewater: Interdependence of initial pollutant concentration, temperature and iron concentration. Appl. Catal. B. 97 (1-2), 292, 2010.
  • 14. LUIZ D.B., GENENA A. K., VIRMOND E., JOSE H.J., MOREIRA R.F., GEBHARDT W., SCHRODER H. F. Identification of degradation products of erythromycin A arising from ozone and AOP treatment, Water. Environ. Res, 82 (9), 797, 2010.
  • 15. ABDELRAHEEM W.H.M., HE X., DUAN X., DIONYSIOU D.D. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254 nm/H₂O₂. J. Hazard. Mat. 282, 233, 2015.
  • 16. FOTIOU T., TRIANTIS T.M., KALOUDIS T., HISKIA A. Evaluation of the photocatalytic activity of TiO₂ based catalysts for the degradation and mineralization of cyanobacterial toxins and water off-odor compounds under UV-A, solar and visible light. Chem. Eng. J. 261, 26, 2015.
  • 17. MAGALHAES P., ANDRADE L., NUNES O.C., MENDES A. Titanium dioxide photocatalysis: fundamentals and application on photoinactivation. Rev. Adv. Mater. Sci. 51, 91, 2017.
  • 18. CHIN S., PARK E., KIM M., JEONG J., BAE G.N., JURNG J. Preparation of TiO₂ ultrafine nanopowder with large surface area and its photocatalytic activity for gaseous nitrogen oxides. Powd. Technol. 206 (3), 306, 2011.
  • 19. BEHNAJADY M.A., ESKANDARLOO H. Preparation of TiO₂ nanoparticles by the sol-gel method under different pH conditions and modeling of photocatalytic activity by artificial neural network. Res. Chem. Inter. 41 (4), 2001, 2015.
  • 20. LI Y., GUO M., ZHANG M., WANG X., LI Y., GUO M., ZHANG M., WANG X. Hydrothermal synthesis and characterization of TiO₂ nanorod arrays on glass substrates. Mater. Res. Bullet. 44 (6), 1232, 2009.
  • 21. GAO X., WACHS E. Titania-Silica as catalysts: Molecular structural characteristics ad physico-chemical properties. Catal. Tod. 51 (2), 233, 1999.
  • 22. LEE S., CHO I.S., LEE J.H., KIM D.H., KIM D.W., KIM J.Y., SHIN H., LEE J.K., JUNG H.S., PARK N.G., KIM K., KO M.J., HONG K.S. Two-step sol-gel method-based TiO₂ nanoparticles with uniform morphology and size for efficient photo-energy conversion devices. Chem. Mater. 22 (6), 1958, 2010.
  • 23. HARRAZ F.A., MOHAMED R.M., SHAWKY A., IBRAHIM I.A. Composition and Phase Control of Ni/NiO Nanoparticles for Photocatalytic Degradation of EDTA. J. Alloys Comp. 508 (1), 133, 2010.
  • 24. LIAO C.H., SHIH W.T., CHEN C.C., LEE Y.L., KUO P.L. Effect of photoelectrode morphology of single-crystalline anatase nanorods on the performance of dye-sensitized solar cells. Thin. Sol. Films. 519 (16), 5552, 2011.
  • 25. RIZZO L. Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water. Res. 45 (15), 4311, 2011.
  • 26. MURCIA J.J., HIDALGO M.C., NAVIO J.A., VAIANO V., SANNINO D., CIAMBELLI P. Cyclohexane photocatalytic oxidation on Pt/TiO₂ catalysts. Catal. Today. 209, 164, 2013.
  • 27. MATILAINEN A., SILLANPAA M. Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere. 80 (4), 351, 2010.
  • 28. LUIZ D.B., ANDERSEN S.L.F., BERGER C., JOSE H.J., MOREIRA R.F.P.M. Photocatalytic Reduction of Nitrate Ions in Water over Metal-Modified TiO₂. J. Photo. Photobio. 246, 36, 2012.
  • 29. RIVAS F.J., BELTRAN F.J., ENCINAS. A. Removal of emergent contamina nts: Integration of ozone and photocatalysis. J. Environ. Manag. 100, 10, 2012.
  • 30. KAMAT P.V. Manipulation of charge transfer across semiconductor Interface. J. Phy. Chem. Lett. 3 (5), 663, 2012.
  • 31. ATHANASEKOU C.P., ROMANOS G.E., KATSAROS F.K., KORDATOS K., LIKODIMOS V., FALARAS P. Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. J. Memb. 392 (3), 192, 2012.
  • 32. BEDFORD N.M., PELAEZ M., HAN C., DIONYSIOU D.D., STECKL A.J. Photocatalytic cellulosic electrospun fibers for the degradation of potent cyanobacteria toxin microcystin-LR. J. Mater. Chem. 22 (25), 12666, 2012.
  • 33. APHA, AWW. A., WPCF. Standard Methods for the Examination of Water and Wastewater Washington, DC: American Public Health Association, 20th Edition 1998.
  • 34. SEERY K.S., GEORGE R., FLORIS P., PILLAI S.C. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A: Chem. 189 (2-3), 258, 2007.
  • 35. DONG Q., SU H., ZHNG D., LIU Z., LAI Y. Synthesis of hierarchical mesoporous titania with interwoven networks by eggshell membrane directed sol-gel technique. Micropor. Mesopor. Mat. 98 (1-3), 344, 2007.
  • 36. REZA K. M., KURNY A. S. W., GULSHAN F. Parameters affecting the photocatalytic degradation of dyes using TiO₂: a review. Appl. Water. Sci.7 (4), 1569, 2017.
  • 37. ARIMI A., FARHADIAN M., REZA A., NAZAR S., HOMAYONFAL M. Assessment of operating parameters for photocatalytic degradation of a textile dye by Fe₂O₃/TiO₂/clinoptilolite nanocatalyst using taguchi experimental design. Res. Chem. Intermed. 42 (5), 4021, 2016.
  • 38. NG C.M., CHEN P.C., MANICKAM S. Hydrothermal crystallization of titania on silver nucleation sites for the synthesis of visible light nano-photocatalysts-Enhanced photoactivity using Rhodamine 6G. Appl. Catal. A: Gen. 433, 75, 2012.
  • 39. NAGPURE H., BANAKAR V., DHANDA R., WANI K.S. Degradation of Paper Mill Wastewater using Batch (Photo catalytic) Reactor. Inter. J. Gre. Chem. Bio. 3 (3), 24, 2013.
  • 40. AHMED S., RASUL M.G., BROWN R., HASHIB M.A. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. J. Enviro. Manag. 92, 311, 2011.
  • 41. KUMAR A., HITKARI G., GAUTAM M., SINGH S., PANDEY G. SYNTHESIS, Characterization and Application of Cu-TiO₂ Nanaocomposites in Photodegradation of Methyl Red (MR). Inter. Adv. Res. J. Sci. Eng. Technol. 2 (12), 50, 2015.
  • 42. BHAKYA S., MUTHUKRISHNAN S., SUKUMARAN M., MUTHUKUMAR. M., SENTHIL K.T., RAO M.V. Catalytic degradation of organic dyes using synthesized silver nanoparticles: a green approach. J. Biorem. Biodegrad. 6, 312, 2015.
  • 43. CHONG M.N., JIN B., CHOW C.W.K., SAINT C. Recent developments in photocatalytic water treatment technology: A review. Water. Res. 44 (10), 2997, 2010.
  • 44. KUMAR B.N., YERRAMILLI A., VURIMINDI H. Comparative studies of degradation of dye intermediate (H-acid) using TiO₂/UV/H₂O₂ and Photo-Fenton process. J. Chem. Pharm. Res. 3 (2), 718, 2011.
  • 45. PREMA R.S., KANDASAMY S. Photo Catalytic Oxidation: A Novel Route For Removing Pollutant Present In The Seafood Industry Effluent. Res J. Chem. Environ. Sci. 5 (1), 31, 2017.
  • 46. AUTA M., HAMEED B. Chitosan-clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem. Eng. J. 237, 352, 2014.
  • 47. MOZIA S., MORAWSKI A.W., TOYODA M., INAGAKI M. Application of anatase-phase TiO₂ for decomposition of azo dye in a photocatalytic membrane reactor. Desalin. 241 (1-3), 97, 2009.
  • 48. TEIXEIRA T.P.F., PEREIRA S.I., AQUINO S.F., DIAS A. Use of Calcined Layered Double Hydroxides for Decolorization of Azo Dye Solutions: Equilibrium, Kinetics, and Recycling Studies. Enviro. Eng. Sci. 29 (7), 685, 2012.
  • 49. HAYAT K., GONDAL M.A., KHALED M.M., AHMED S., SHEMSI A.M. Nano zno synthesi by modified sol gel method and its application in heterogenous photocatalytic removal of phenol from water. App. Catal. A. Gen. 393 (1-2), 122, 2011.
  • 50. SHIVARAJU H.P. Removal of organic pollutants in the municipal sewage water by TiO₂ based heterogenous photocatalysis. Inter. J. Environ. Sci . 1 (5),911, 2011.
  • 51. KARIMI L., ZOHOORI S., YAZDANSHENAS, M. E. Photocatalytic degradation of azo dyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst, J. Saudi. Chem. Soci. 18 (5), 581, 2014.
  • 52. SALHI A., AARFANE A., TAHIRI S., KHAMLICHE L., BENSITEL M., BENTISS F., EL KRATI M. Study of the photocatalytic degradation of methylene blue dye using titanium-doped hydroxyapatite. Medi. J. Chem. 4 (1), 59, 2015.
  • 53. KUMAR A., PANDAY G. A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials. Mat. Sci. Eng. Inter. J. 1 (3), 1, 2017.
  • 54. TEOH W.Y., AMAL R., SCOTT J. Progress in heterogenours photocatalysis: From classical radical chemistry to engineering nanomaterials and solar reactors. J. Phys. Chem. Lett. 3, (5) 629, 2012.
  • 55. KUDO, A. Z-scheme photocatalyst systems for water splitting under visible light irradiation. M.R.S Bull. 36 (1), 32, 2011.
  • 56. CAO Y., TAN H., SHI T., TANG T., LI J. Preparation of Ag-doped TiO₂ nanoparticles for photocatalytic degradation of acetamiprid in water. J. Chem. Technol. Biotechnol. 83 (4), 546, 2008.
  • 57. MOGAL S.I., VIMAL G., GANDHI V.G., MISHRA M., TRIPATHI S., SHRIPATHI T., PRADYUMAN A. JOSHI P.A., SHAH D.O. Single-Step Synthesis of Silver-Doped Titanium Dioxide: Influence of Silver on Structural, Textural, and Photocatalytic Properties. Ind. Eng. Chem. Res. 53 (14), 5749, 2014.
  • 58. MARTYANOV I.N., BERGER T., DIWALD O., RODRIGUES S., KLABUNDE K.J. Enhancement of TiO₂ visible light photoactivity through accumulation of defects during reduction-oxidation treatment. J. Photochem. Photobiol. A: Chem. 212 (2-3), 135, 2010.
  • 59. PANDEY A., KALAL S., AMETA C., AMETA R., KUMAR S., PUNJABI P.B. Synthesis, characterization and application of naïve and nano-sized titanium dioxide as a photocatalyst for degradation of methylene blue. J. Saudi. Chem. Soci. 19 (5), 528, 2015.
  • 60. SAMSUDIN E.M., GOH S.N., WU T.Y., LING T.T., HAMID S.A., JUAN J.C. Evaluation on the Photocatalytic Degradation Activity of Reactive Blue 4 using pure anatase nano TiO₂. Sain. Malay. 44 (7), 1011, 2015.
  • 61. ZHANG Y., SELVARAJ R., SILLANPAA M., KIM Y., TAID C. The influence of operating parameters on heterogeneous photocatalytic mineralization of phenol over BiPO4. Chem. Eng. J. 254, 117, 2014.
  • 62. ISMAIL A. A. Facile synthesis of mesoporous Ag-loaded TiO₂ thin film and its photocatalytic properties. Micro. Meso. Mat. 149 (1), 69, 2012.
  • 63. ALBITER E., VALENZUELA M. A., ALFARO S., VALVERDE-AGUILAR G., MARTINEZ-PALLARES F.M. Photocatalytic deposition of Ag nanoparticles on TiO₂: Metal precursor effect on the structural and photoactivity properties. J. Saudi. Chem. Soci. 19 (5), 563, 2016.
  • 64. SHIN D., JANG M., CUI M., NA S., KHIM J. Enhanced removal of dichloroacetonitrile from drinking water by the combination of solar-photocatalysis and ozonation. Chemo. 93 (11), 2901, 2013.
  • 65. BELTRAN F.J., REY A. Solar or UVA-Visible Photocatalytic Ozonation of Water Contaminants. Mol. 22 (7), 1177, 2017.
  • 66. HORAKOVA M., KLEMENTOVA S., KRIZ P., BALAKRISHNA S.K., SPATENKA P., GOLOVKO O., HÁJKOVÁ P., EXNAR P. The synergistic effect of advanced oxidation processes to eliminate resistant chemical compounds. Surf. Coat. Technol. 241, (25) 154, 2014.
  • 67. MEHRJOUEI M., MÜLLER S., MÖLLER D. Catalytic and photocatalytic ozonation of tert-butyl alcohol in water by means of falling film reactor: kinetic and cost effectiveness study. J. Chem. Eng. 248, 184, 2014.
  • 68. WU D., YOU H., ZHANG R., CHEN C., LEE D.J. Inactivation of Amphidinium sp. In ballast waters using UV/Ag-TiO₂ + O₃ advanced oxidation treatment. Bioresour. Technol. 102 (21), 9838, 2011.
  • 69. RODRIGUEZ E.M., MARQUEZ G., LEON E.A., ALVAREZ P.M., AMAT A.M.. BELTRAN F.J. Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water. J. Environ. Manage. 127, 114, 2013.
  • 70. JING Y., LI L., ZHANG Q., LU P., LIU P., LU X. Photocatalytic ozonation of dimethyl phthalate with TiO₂ prepared by a hydrothermal method. J. Hazard. Mater. 189 (1-2), 40, 2011.
  • 71. SHIN D., JANG M., CUI M., NA S., KHIM J. Enhanced removal of dichloroacetonitrile from drinking water by the combination of solar-photocatalysis and Ozonation. Chemo. 93 (11), 2901, 2013.
  • 72. GOMES J.F.,LEAL I., BEDNARCZYK K., GMUREK M., STELMACHOWSKI M., DIAK M., QUINTA-FERREIRA E.M., COSTA R.,QUINTA-FERREIRA R.M., MARTINS R.C. Photocatalytic ozonation using doped TiO₂ catalysts for the removal of parabens in water. Sci. Tot. Env. 609, 329, 2017.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.