PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

Carbonized waste corrugated paper packaging boxes as low-cost adsorbent for removing aqueous Pb(II), Cd(II), Zn(II), and methylene blue

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A common solid waste – corrugated-paper packaging boxes – was carbonized at 300, 450, and 600ºC to develop low-cost adsorbents (biochars). The resulting adsorbents were characterized and their adsorption performances were evaluated by the batch sorption of aqueous Pb(II), Zn(II), Cd(II), and methylene blue (MB). The biochar obtained at 600ºC exhibited larger specific surface area, higher mineral contents, and pH of zero point charge (pHPZC). Calcium carbonate, lead carbonate/basic, and zinc carbonate were observed in the metal-sorbed biochars by a power X-ray diffractometer (XRD). The biochar of higher pyrolysis temperature (600ºC) had high sorption capacity of aqueous Pb(II), Zn(II), and Cd(II) with the Langmuir maximum sorption capacity of 458, 146, and 10.7 mg g⁻¹, respectively. The pseudo-second-order model gave a better fit for the kinetic data of Pb(II), Zn(II), Cd(II), and MB onto the biochar (600ºC). Moreover, the electrostatic attraction was the dominant mechanism for adsorption of MB while precipitation could be the main mechanisms for adsorption of Pb(II), Zn(II), and Cd(II). Therefore, carbonization can be an efficient and value-addition method for the recycling of waste corrugated paper packaging boxes and for the low-cost wastewater treatment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

6

Opis fizyczny

p.2483-2491,fig.,ref.

Twórcy

autor
  • School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, P.R. China
autor
  • School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, P.R. China
autor
  • School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, P.R. China
autor
  • State Key Laboratory of Analytical Chemistry for Life Science, Center of Material Analysis and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P.R. China

Bibliografia

  • 1. PIVNENKO K., ERIKSSON E., ASTRUP T.F. Waste paper for recycling: Overview and identification of potentially critical substances. Waste Manage 45, 134, 2015.
  • 2. ADHIKARI C.R., PARAJULI D., INOUE K., OHTO K., KAWAKITA H., HARADA H. Recovery of precious metals by using chemically modified waste paper. New J Chem 32, 1634, 2008.
  • 3. KALPANA D., CHO S.H., LEE S.B., LEE Y.S., MISRA R., RENGANATHAN N.G. Recycled waste paper - A new source of raw material for electric double-layer capacitors. J Power Sources 190, 587, 2009.
  • 4. MA Y., HUMMEL M., MAATTANEN M., SARKILAHTI A., HARLIN A., SIXTA H. Upcycling of waste paper and cardboard to textiles. Green Chem 18, 858, 2016.
  • 5. GHORBEL L., ROUISSI T., BRAR S.K., LOPEZ-GONZALEZ D., RAMIREZ A.A., GODBOUT S. Valueadded performance of processed cardboard and farm breeding compost by pyrolysis. Waste Manage 38, 164, 2015.
  • 6. AZIMI A., AZARI A., REZAKAZEMI M., ANSARPOUR M. Removal of heavy metals from industrial wastewaters: A review. Chembioeng Rev 4, 37, 2017.
  • 7. MATOVIC D. Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy 36, 2011, 2011.
  • 8. SOHI S.P., KRULL E., LOPEZ-CAPEL E., BOL R. A review of biochar and its use and function in soil. In Sparks D.L. (ed.): Advances in agronomy, Vol. 105, Burlington: Academic Press, 2010, 47, 2010.
  • 9. MAYER Z.A., ELTOM Y., STENNETT D., SCHRODER E., APFELBACHER A., HORNUNG A. Characterization of engineered biochar for soil management. Environ Prog Sustain 33, 490, 2014.
  • 10. DING Z., HU X., WAN Y., WANG S., GAO B. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. J Ind Eng Chem 33, 239, 2016.
  • 11. INYANG M.I., GAO B., YAO Y., XUE Y.W., ZIMMERMAN A., MOSA A., PULLAMMANAPPALLIL P., OK Y.S., CAO X.D. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Env Sci Tec 46, 406, 2016.
  • 12. AHMED M.B., ZHOU J.L., NGO H.H., GUO W., CHEN M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource Technol 214, 836, 2016.
  • 13. MOHAN D., SARSWAT A., OK Y.S., PITTMAN C.U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review. Bioresource Technol 160, 191, 2014.
  • 14. MICHALEKOVA-RICHVEISOVA B., FRISTAK V., PIPISKA M., DURISKA L., MORENO-JIMENEZ E., SOJA G. Iron-impregnated biochars as effective phosphate sorption materials. Environ Sci Pollut R 24, 463, 2017.
  • 15. HU X., DING Z.H., ZIMMERMAN A.R., WANG S.S., GAO B. Batch and column sorption of arsenic onto ironimpregnated biochar synthesized through hydrolysis. Water Res 68, 206, 2015.
  • 16. XU X., HU X., DING Z., CHEN Y., GAO B. Waste-artpaper biochar as an effective sorbent for recovery of aqueous Pb(II) into value-added PbO nanoparticles. Chem Eng J 308, 863, 2017.
  • 17. FARIA P.C.C., ÓRF O J.J.M., PEREIRA M.F.R. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res 38, 2043, 2004.
  • 18. BOGUSZ A., OLESZCZUK P., DOBROWOLSKI R. Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresource Technol 196, 540, 2015.
  • 19. KEILUWEIT M., NICO P.S., JOHNSON M.G., KLEBER M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44, 1247, 2010.
  • 20. TAN X., LIU Y., ZENG G., XIN W., HU X., GU Y., YANG Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125, 70, 2015.
  • 21. XU X., CAO X., ZHAO L. Comparison of rice huskand dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere 92, 955, 2013.
  • 22. YAO Y., GAO B., INYANG M., ZIMMERMAN A.R., CAO X., PULLAMMANAPPALLIL P., YANG L. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technol 102, 6273, 2011.
  • 23. TAN C., ZHANG Y., WANG H., LU W., ZHOU Z., ZHANG Y., REN L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresource Technol 164C, 47, 2014.
  • 24. YANG G., WANG Z., XIAN Q., SHEN F., SUN C., ZHANG Y., WU J. Effects of pyrolysis temperature on the physicochemical properties of biochar derived from vermicompost and its potential use as an environmental amendment. RSC Adv 5, 40117, 2015.
  • 25. PYRZYNSKA K. Sorption of Cd(II) onto carbon-based materials-a comparative study. Microchim Acta 169, 7, 2010.
  • 26. DING W., DONG X., IME I.M., GAO B., MA L.Q. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105, 68. Chemosphere 105, 68, 2014.
  • 27. JIANG S., HUANG L., NGUYEN T.A.H., OK Y.S., RUDOLPH V., YANG H., ZHANG D. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere 142, 64, 2016.
  • 28. DING Z., HU X., WU H. Multiple characterization for mechanistic insights of Pb(II) sorption onto biochars derived from herbaceous plant, biosolid, and livestock waste. Bioresources 12, 6763, 2017.
  • 29. LIU N., CHARRUA A.B., WENG C.H., YUAN X., DING F. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresource Technol 198, 55, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-90e77974-2c6d-42ff-a19b-0244392610a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.