PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 12 |

Tytuł artykułu

In vitro plantlet regeneration and Agrobacterium tumefaciens-mediated genetic transformation of Indian Kino tree (Pterocarpus marsupium Roxb.)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objective of the present study was to develop a protocol for in vitro plantlet regeneration and Agrobacterium tumefaciens-mediated genetic transformation using immature cotyledon explants of Indian Kino tree (Pterocarpus marsupium Roxb.). Immature cotyledon explants excised from 9-day-old axenic seedlings produced optimal callus on Murashige and Skoog (MS) medium supplemented with 1.07 μM α-naphthalene acetic acid (NAA), after 2 weeks of culture. When the above said callus was incubated on MS + 8.90 μM 6-benzylaminopurine (BAP) + 1.07 μM NAA, a regeneration frequency of 60.41 % with shoot number and length 12.2 ± 0.85 and 1.4 ± 0.13, respectively, was observed. For further shoot multiplication and elongation, these cultures were transferred onto MS + 4.40 μM BAP. Elongated shoots dipped in 19.60 μM indole-3-butyric acid (IBA) for 24 h and then cultured on ½MS + 2.85 μM IBA, 75 % shoots developed roots and 95 % of plantlets survived in field condition. Organogenic callus was co-cultivated with the A. tumefaciens strain LBA4404 harboring the binary plasmid pCAMBIA1301with ß-glucuronidase (uidA) and hygromycin phosphotransferase (hpt) genes and grown on MS + 8.90 μM BAP + 1.07 μM NAA (RM) + 200 μM acetosyringone for 2 days and then transferred to MS + 8.90 μM BAP + 1.07 μM NAA + 20 mg/l hygromycin + 250 mg/l cefotaxime (SIM) and 4.40 μM BAP + 15 mg/l hygromycin + 200 mg/l cefotaxime (SEM). The putatively transformed shoots were subsequently rooted on ½MS + 2.85 μM IBA + 20 mg/l hygromycin (SRM), after pulse treatment for 24 h with 19.60 μM IBA. Successful gene transfer into putatively transformed plantlets was confirmed by histochemical GUS assay, PCR and RT-PCR analysis. Southern blot analysis of regenerated plantlets confirmed the integration of hpt gene in transgenic plantlets. In the present study, a rate of 20.92 % transformation frequency was achieved and the genetic transformation protocol presented here may pave way for genetic manipulation of this multipurpose legume tree.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

12

Opis fizyczny

p.3437-3446,fig.,ref.

Twórcy

autor
  • Department of Biotechnology, Kakatiya University, Warangal 506009, India
autor
  • Department of Biotechnology, Kakatiya University, Warangal 506009, India
autor
  • Department of Biotechnology, Kakatiya University, Warangal 506009, India
autor
  • Department of Biotechnology, Kakatiya University, Warangal 506009, India
autor
  • Department of Biotechnology, Kakatiya University, Warangal 506009, India
  • Department of Biotechnology, Kakatiya University, Warangal 506009, India

Bibliografia

  • Adinarayana D, Syamasundar KV (1982) A new sesquiterpene alcohol from Pterocarpus marsupium. Phytochem 21:1083–1085
  • Al Abdallat A, Sawwan J, Al Zoubi B (2011) Agrobacterium tumefaciens-mediated transformation of callus cells of Crataegus aronia. Plant Cell Tiss Org Cult 104:31–39
  • Anis M, Kasif HM, Anwar S (2005) In vitro plantlet regeneration of Pterocarpus marsupium Roxb., an endangered leguminous tree. Curr Sci 88:861–863
  • Chakraborty A, Gupta N, Ghosh K, Roy P (2010) In vitro evaluation of the cytotoxic, anti-proliferative and anti-oxidant properties of pterostilbene isolated from Pterocarpus marsupium. Toxicol In Vitro 24:1215–1228
  • Chand S, Singh AK (2004) In vitro shoot regeneration from cotyledonary node explants of a multipurpose leguminous tree, Pterocarpus marsupium Roxb. In Vitro Cell Dev Biol Plant 40:464–466
  • Chaudhuri AB, Sarkar DD (2002) Biodiversity endangered: India’s threatened wildlife and medicinal plants. Sci Publ, Jodhpur, pp 169–172
  • Devgun M, Nanda A, Ansari SH (2009) Pterocarpus marsupium Roxb.-a comprehensive review. Pharmacog Rev 3:359–363
  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15
  • Giri CC, Shyamkumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees 18:115–135
  • Gorpenchenko TY, Kiselev KV, Bulgakov VP, Tchernoded GK, Bragina EA, Khodakovskaya MV, Koren OG, Batygina TB, Zhuravlev YuN (2006) The Agrobacterium rhizogenes rolC-gene-induced somatic embryogenesis and shoot organogenesis in Panax ginseng transformed calluses. Planta 223:457–467
  • Husain MK, Anis M, Shahzad A (2007) In vitro propagation of Indian Kino (Pterocarpus marsupium Roxb.) using Thidiazuron. In Vitro Cell Dev Biol Plant 43:59–64
  • Husain MK, Anis M, Shahzad A (2008) In vitro propagation of a multipurpose leguminous tree (Pterocarpus marsupium Roxb.) using nodal explants. Acta Physiol Plant 30:353–359
  • Husain MK, Anis M, Shahzad A (2010) Somatic embryogenesis and plant regeneration in Pterocarpus marsupium Roxb. Trees 24:781–787
  • Igasaki T, Mohri T, Ichikawa H, Shinohara K (2000) Agrobacterium tumefaciens-mediated transformation of Robinia pseudoacacia. Plant Cell Rep 19:448–453
  • James DJ, Uratsu S, Cheng J, Negri P, Viss P, Dandekar AM (1993) Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Rep 12:559–563
  • Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907
  • Jube S, Borthakur D (2009) Development of an Agrobacterium-mediated transformation protocol for the tree-legume Leucaena leucocephala using immature zygotic embryos. Plant Cell Tiss Org Cult 96:325–333
  • Kanwar K, Bhardwaj A, Agarwal S, Sharma DR (2003) Genetic transformation of Robinia pseudoacacia by Agrobacterium tumefaciens. Indian J Exp Biol 41:149–153
  • Kirana H, Girish HN, Srinivasan BP (2010) The study of aqueous extract of Pterocarpus marsupium Roxb. on cytokine TNF-α in type 2 diabetic rats. Ind J Pharmacol 42:392–396
  • Li ZN, Fang F, Liu GF, Bao MZ (2007) Stable Agrobacterium-mediated genetic transformation of London plane tree (Platanus acerifolia Willd.). Plant Cell Rep 26:641–650
  • Manickam M, Ramanathan M, Jahromi MAF, Chansouria JPN, Ray AB (1997) Anti hyperglycemic activity of phenolics from Pterocarpus marsupium. J Nat Prod 60:609–610
  • Maruthupandian A, Mohan VR (2011) Antidiabetic, antihyperlipidaemic and antioxidant activity of Pterocarpus marsupium Roxb. In alloxan induced diabetic rats. Int J Pharm Tech Res 3:1681–1687
  • Maurya R, Singh R, Mundkinajeddu D, Handa SS, Yadav PP, Mishra PK (2004) Constituents of Pterocarpus marsupium: an ayurvedic crude drug. Phytochem 65:915–920
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497
  • Niu X, Li X, Veronese P, Bressan RA, Weller SC, Hasegawa PM (2000) Factors affecting Agrobacterium tumefaciens-mediated transformation of peppermint. Plant Cell Rep 19:304–310
  • Radhika T (2012) Studies on medicinal properties and its in vitro multiplication of Pterocarpus marsupium (Roxb,). Kakatiya University, India
  • Radhika T, Mahendar P, Venkatesham A, Anreddy RNR, Narsimha RY, Krishna DR, Christopher T, Sadanandam A (2010a) Antioxidant and analgesic activities of Pterocarpus marsupium Roxb. J Herbs Spices Med Plants 16:63–68
  • Radhika T, Mahendar P, Venkatesham A, Reddy ARN, Reddy YN, Sadanandam A, Christopher T (2010b) Hypoglycemic activity of red kino tree in normal and streptozotocin induced diabetic rats. Int J Pharmacol 6:301–305
  • Sarria R, Calderon A, Thro AM, Torres E, Mayer JE, Roca WM (1994) Agrobacterium-mediated transformation of Stylosanthes guianensis and production of transgenic plants. Plant Sci 96:119–127
  • Seshadri TR (1972) Polyphenols of Pterocarpus and Dalbergia woods. Phytochem 11:881–898
  • Shimoda N, Toyoda YA, Nagamine J, Usami S, Katayama M, Sakagami Y, Michida Y (1990) Control of expression of Agrobacterium vir genes by synergistic action of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci USA 87:6684–6688
  • Thangjam R, Sahoo L (2012) In vitro regeneration and Agrobacterium tumefaciens-mediated genetic transformation of Parkia timoriana (DC.) Merr.: a multipurpose tree legume. Acta Physiol Planta 34:1207–1215
  • Tiwari S, Shah P, Singh K (2004) In vitro propagation of Pterocarpus marsupium Roxb: an endangered medicinal tree. Ind J Biotechnol 3:422–425
  • Tournier V, Grat S, Marque C, Elkayal W, Penchel R, De Andrade G, Boudet AM, Teulieres C (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis X Eucalyptus urophylla). Transgen Res 12:403–411
  • Vander Fits L, Deakin EA, Hoge JH, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495–502
  • Vats V, Yadav SP, Biswas NR, Grover JK (2004) Anti-cataract activity of Pterocarpus marsupium bark and Trigonella foenum-graecum seeds extract in alloxan diabetic rats. J Ethnopharmacol 93:289–294
  • Yang M, Xie X, Zheng C, Zhang F, He X, Li Z (2008) Agrobacterium tumefaciens-mediated genetic transformation of Acacia crassicarpa via organogenesis. Plant Cell Tiss Org Cult 95:141–147

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-90b73316-2013-4924-9921-1a7c67bd7ed8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.