PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 60 | 4 |

Tytuł artykułu

The use of infrared spectroscopy and artificial neural networks for detection of uropathogenic Escherichia coli strains’ susceptibility to cephalothin

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background & Aims: Infrared spectroscopy is an increasingly common method for bacterial strains' testing. For the analysis of bacterial IR spectra, advanced mathematical methods such as artificial neural networks must be used. The combination of these two methods has been used previously to analyze taxonomic affiliation of bacteria. The aim of this study was the classification of Escherichia coli strains in terms of susceptibility/resistance to cephalothin on the basis of their infrared spectra. The infrared spectra of 109 uropathogenic E. coli strains were measured. These data are used for classification of E. coli strains by using designed artificial neural networks. Results: The most efficient artificial neural networks classify the E. coli sensitive/resistant strains with an error of 5%. Conclusions: Bacteria can be classified in terms of their antibiotic susceptibility by using infrared spectroscopy and artificial neural networks.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

60

Numer

4

Opis fizyczny

p.713-718,fig.,ref.

Twórcy

autor
  • Department of Microbiology, Jan Kochanowski University, Kielce, Poland
autor
  • Organic Chemistry Division, Jan Kochanowski University, Kielce, Poland
  • Independent Department of Environmental Protection and Modeling, Jan Kochanowski University, Kielce, Poland
autor
  • Department of Microbiology, Jan Kochanowski University, Kielce, Poland

Bibliografia

  • Adamus-Bialek W, Wojtasik A, Majchrzak M, Sosnowski M, Parniewski P (2009) (CGG)4-Based PCR as a novel tool for discrimination of uropathogenic Escherichia coli Strains: comparison with enterobacterial repetitive intergenic consensus-PCR. Journal of Clinical Microbiology 47: 3937-3944. 
  • Adamus-Bialek W, Zajac E, Parniewski P, Kaca W (2013) Comparison of antibiotic resistance patterns in collections of Escherichia coli and Proteus mirabilis uropathogenic strains. Mol Biol Rep 40: 3429-3435. 
  • Bosch A, Minan A, Vescina C, Degrossi J, Gatti B, Montanaro P, Messina M, Franco M, Vay C, Schmitt J, Naumann D, Yantorno O (2008) Fourier Transform Infrared Spectroscopy for rapid identification of nonfermenting gram-negative bacteria isolated from sputum samples from cystic fibrosis patients. J Clin Microbiol 46: 2535-2546. 
  • Empel J, Baraniak A, Literacka E, Mrówka A, Fiett J, Sadowy E, Hryniewicz W, Gniadkowski M, Beta-PL Study Group. (2008) Molecular survey of beta-lactamases conferring resistance to newer beta-lactams in Enterobacteriaceae isolates from Polish hospitals. Antimicrob Agents Chemother 52: 2449-2454. 
  • Helm D, Labischinski H, Naumann D (1991) Elaboration of a procedure for identification of bacteria using Fourier Transform IR spectral libraries: a stepwise correlation approach. J Microbiol Methods 14: 127-142.
  • Helm D, Labischinski H, Schallehn G, Naumann D (1991) Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol 137: 69-79. 
  • Kot B, Wicha J, Zak-Pulawska Z (2010) Susceptibility of Escherichia coli strains isolated from persons with urinary tract infections in 2007-2008 to antimicrobial agents. Przegl Epidemiol 64: 307-312. 
  • Lechowicz L, Adamus-Bialek W, Kaca W (2013) Attenuated Total Reflectance Fourier Transform Infrared spectroscopy and artificial neural networks applied to differentiate Escherichia coli papG+/papG-strains. J Spectro 2013: 538686 doi:10.1155/2013/538686.
  • Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, Puppels GJ (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51: 255-271. 
  • Mouwen DJ, Capita R, Alonso-Calleja C, Prieto-Gómez J, Prieto M (2006) Artificial neural network based identification of Campylobacter species by Fourier transform infrared spectroscopy. J Microbiol Methods 67: 131-140. 
  • Naumann D, Helm D, Labischinski H (1991) Microbiological characterizations by FT-IR spectroscopy. Nature 351: 81-82. 
  • Prabhu A, Taylor P, Konecny P, Brown MA (2013) Pyelonephritis: what are the present day causative organisms and antibiotic susceptibilities? Nephrology 18: 463-467. 
  • Sockalingum DG, Bouhedja W, Pina P, Allouch P, Mandray C, Labia R, Millot JM, Manfait M (1997) ATR-FTIR spectroscopic investigation of imipenem-susceptible and -resistant Pseudomonas aeruginosa isogenic strains. Biochem Biophys Res Commun 232: 240-246 
  • Wenning M, Büchl NR, Scherer S (2010) Species and strain identification of lactic acid bacteria using FTIR spectroscopy and artificial neural networks. J Biophotonics 3: 493-505. 
  • Yu C, Irudayaraj J (2005) Spectroscopic characterization of microorganisms by Fourier transform infrared microspectroscopy. Biopolymers 77: 368-377. 

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-907ba2b1-55c9-4057-9ffc-21068938a37b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.