Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 3 |

Tytuł artykułu

Analyzing THM concentrations in selected indoor swimming pool waters in the Opole region

Warianty tytułu

Języki publikacji



The aim of this study was to determine the level of disinfection by-products in swimming pool waters in the Opole region. The authors paid special attention to determining the concentrations of trihalomethanes (THMs), which are formed in water during disinfection. Five indoor swimming pools were selected to provide a different range of basin capacity of pools, number of users, and treatment methods. In analyzed waters we found trihalomethane (THM) concentrations in a wide range at 27.6-278.6 μg/dm³. The detected level of total THMs in 57% of samples didn’t fulfill the new proposal of requirements for swimming pool water quality (100 μg/dm³). The dominant compound of THMs was chloroform because of chlorine application in the disinfection method. All tested objects had to implement corrective action plans, the effect of which was to reach the limit of THM total concentration.

Słowa kluczowe








Opis fizyczny



  • Department of Environmental Engineering, Opole University of Technology, Mikolajczyka Street 5, 45-271 Opole, Poland
  • Department of Thermal Engineering and Industrial Facilities, Opole University of Technology, Mikolajczyka Street 5, 45-271 Opole, Poland
  • Department of Process Engineering, Opole University of Technology, Mikolajczyka Street 5, 45-271 Opole, Poland


  • 1. DYCK R., SADIQ R. RODRIGUEZ M J, SIMARD S, TARDIF R. Trihalomethane exposures in indoor swimming pools: a level III fugacity model. Water Res. 45 (16), 5084, 2011.
  • 2. THACKER N.P., NITNAWARE V. Factors influencing formation of trihalomethanes in swimming pool water. B Environ Contam Tox. 71, 633, 2003.
  • 3. SIMARD S. Occurrence des Sous-Produits de la Désinfection Dans L’eau des Piscines Publiques de la Ville de Québec. Occurrence of by-products of disinfection in the water of the public pools of the city of Quebec. Université Laval, Canada, 2009 [In French].
  • 4. SIMARD S., TARDIF R., RODRIGUEZ M J. Variability of chlorination byproduct occurrence in water of indoor and outdoor swimming pools. Water Res. 47 (5), 1763, 2013.
  • 5. TARDIF R., CATTO C., HADDAD S., SIMARD S., RODRIGUEZ M. Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools. Environ Res. 148, 411, 2016.
  • 6. PENG D., SARAVIA F., ABBT-BRAUN G., HORN H. Occurrence and simulation of trihalomethanes in swimming pool water: A simple prediction method based on DOC and mass balance, Water Res. 88, 634, 2016.
  • 7. MARCO E., LOURENCETTI C. GRIMALT J.O., GARI M., FERNÁNDEZ P., FONT-RIBERA L., VILLANUEVA C.M., KOGEVINAS M. Influence of physical activity in the intake of trihalomethanes in indoor swimming pools. Environ. Res. 140, 292, 2015.
  • 8. FONT-RIBERA L., KOGEVINAS M., SCHMALZ C., ZWIENER C., MARCO E., GRIMALT J.O., LIU J., ZHANG X., MITCH W., CRITELLI R., NACCARATI A., HEEDERIK D., SPITHOVEN J., ARJONA L., DE BONT J., GRACIA-LAVEDAN E., VILLANUEVA C.M. Environmental and personal determinants of the uptake of disinfection by-products during swimming. Environ. Res. 149, 206, 2016.
  • 9. LOURENCETTI C., GRIMALT J.O., FERNANDEZ P., FONT-RIBERA L., VILLANUEVA C.M., KOGEVINAS M. Trihalomethanes in chlorine and bromine disinfected swimming pools: Air-water distributions and human exposure. Environ Int. 45, 59, 2012.
  • 10. RICHARDSON S.D., DEMARINI D.M., KOGEVINAS M., FERNANDEZ P., MARCO E., LOURENCETTI C., BALLESTÉ C., HEEDERIK D., MELIEFSTE K., MCKAGUE A.B., MARCOS R., FONT-RIBERA L., GRIMALT J.O., VILLANUEVA C.M. What’s in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming poolwater. Environ. Health Perspect. 118, 1523, 2010.
  • 11. SILVA Z.I., REBELO M.H., SILVA M.M., ALVES A.M., CABRAL M.C., ALMEIDA A.C., AGUIAR F.R., OLIVEIRA A.L., NOGUEIRA A.C., PINHAL H.R., AGUIAR P.M., CARDOSO A.S. Trihalomethanes in Lisbon indoor swimming pools: occurrence, determining factors, and health risk classification. J. Toxicol. Environ. Health A, 75, 878, 2012.
  • 12. FANTUZZI G., RIGHI E., PREDIERI G„ CEPPELLI G., GOBBA F., AGGAZZOTTI G. Occupational exposure to trihalomethanes in indoor swimming pools. Sci Total Environ. 264 (3), 257, 2001.
  • 13. RIGHI E., FANTUZZI G., PREDIERI G., AGGAZZOTTI G. Bromate, chlorite, chlorate, haloacetic acids, and trihalomethanes occurrence in indoor swimming pool waters in Italy. Microchem J. 113, 23, 2014.
  • 14. CHU H., NIEUWENHUIJSEN M.J. Distribution and determinants of trihalomethane concentrations in indoor swimming pools. Occup Environ Med. 59 (4), 243, 2002.
  • 15. LEE J., HA K.T. ZOH K.D. Characteristics of trihalomethane (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods. Sci Total Environ. 407, 1990, 2009.
  • 16. PANYAKAPO M., SOONTORNCHAI S. PAOPUREE P. Cancer risk assessment from exposure to trihalomethanes in tap water and swimming pool water. J Environ Sci. 20 (3), 372, 2008.
  • 17. GOMA A., GUISASOLA A. TAYÀ C., BAEZA J.A., BAEZA M. BARTROLÍ A., LAFUENTE J., BARTROLÍ J. Benefits of carbon dioxide as pH reducer in chlorinated indoor swimming pools. Chemosphere. 80, 428, 2010.
  • 18. RATAJCZAK K. Examination of the structure of the ventilation system in terms of energy efficiency for indoor swimming pools, PhD thesis, UAM, Poznań 2015 [In Polish]
  • 19. PENTAMWA P., SUKTON B., WONGKLOM T., PENTAMWA S. Cancer risk assessment from trihalomethanes. Int J Environ Sci Dev. 4 (5), 538, 2013.
  • 20. MISHRA B.K., GUPTA S.K., SINHA A. Human health risk analysis from disinfection by-products (DBPs) in drinking and bathing water of some Indian cities. J Environ Health Sci Eng. 12, 73, 2014.
  • 21. VILLANUEVA C.M., FONT-RIBERA L. Health impact of disinfection by-products in swimming pools. Annali dell’Istituto Superiore di Sanità. 48(4), 387-396, 2012.
  • 22. MAIA R., CORREIA M., BRÁS PEREIRA I.M., BELEZA V.M., MAIA R., CORREIA M., PEREIRA I.M.B., BELEZA V.M. Optimization of HS-SPME analytical conditions using factorial design for trihalomethanes determination in swimming pool water samples. MICROCHEM J. 112, 164, 2014.
  • 23.
  • 24. Regulation of Minister of Health from 9 November 2015 on the requirements to be met by water in swimming pools [In Polish].
  • 25. Guidelines for safe recreational waters, World Health Organization, Switzerland, 2006.
  • 26. COSTET N., VILLANUEVA C.M. JAAKKOLA JJ., KOGEVINAS M., CANTOR K.P., KING W.D., LYNCH C.F., NIEUWENHUIJSEN M.J., CORDIER S. Water disinfection by-products and bladder cancer: is there a European specificity? A pooled and metaanalysis of European casecontrol studies. Occup Environ Med. 68, 379, 2011.
  • 27. ZWIENER C., RICHARDSON S.D., DE MARINI D.M., GRUMMT T., GLAUNER T., FRIMMEL F.H. Drowning in disinfection byproducts? Assessing swimming pool water. Environ Sci Technol. 41, 363, 2007.
  • 28. JO W.K., KWON K.D., DONG J.I., CHUNG Y. Muti-route trihalomethane exposure in households using municipal tap water treated with chlorine or ozone-chlorine. Sci Total Environ. 339, 143, 2005.
  • 29. CAMMANN K., HUBNER K. Trihalomethane concentrations in swimmers and bath attendants blood and urine after swimming or working in indoor swimming pools. Arch Environ Health. 50 (1), 61, 1995.
  • 30. WŁODYKA-BERGIER A., BERGIER T. The impact of water disinfection using ultraviolet on creation potential, halogen products of chlorination of the water supply network. Ochrona Środowiska. 35 (3), 53, 2013 [In Polish].
  • 31. KLOSOK-BAZAN I., SOWA A., GONO M., GONO R. Nano-silver as a new agent for conditioning of cooling water in power stations-technical and economic aspects of technology implementation, Proceedings of the 16th International Scientific Conference on Electric Power Engineering, EPE 2015.
  • 32. CZAJKA K., SZIWA D., LATOUR D., ADAMCZEWSKA M. The content of trihalomethanes in brine of a therapeutic pool and in the pool hall air, Roczn. PZH 54 (1), 109, 2003 [In Polish].
  • 33. WANG X., GARCIA L.M., ZHANG X., YANG H., XIE Y. Haloacetic acids in swimming pool and spa water in the United States and China. Front Environ Sci Eng. 8 (6), 820, 2014.
  • 34. ERDINGER L., MASCHER F. Formation of volatile disinfection by products in swimming pool water. In proceeding of the Fourth International Swimming Pool & Spa Conference, Research and Development on Health, Air and Water Quality Aspects of the Man-made Recreational Water Environment, March 15-18; Porto, Portugal, 2011.
  • 35. Regulation of Minister of Health from 13 November 2015 the quality of water intended for human consumption [In Polish].
  • 36. LUKS-BETLEJ K., BODZEK D. Occurrence of trihalomethanes, particularly those containing bromine, in Polish drinking waters. Pol J Environ Stud. 11 (3), 255, 2002.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.