PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 65 | 1 |

Tytuł artykułu

Isolation and characterization of α-endosulfan degrading bacteria from the microflora of cockroaches

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Extensive applications of organochlorine pesticides like endosulfan have led to the contamination of soil and environments. Five different bacteria were isolated from cockroaches living in pesticide contaminated environments. According to morphological, physiological, biochemical properties, and total cellular fatty acid profile by Fatty Acid Methyl Esters (FAMEs), the isolates were identified as Pseudomonas aeruginosa G1, Stenotrophomonas maltophilia G2, Bacillus atrophaeus G3, Citrobacter amolonaticus G4 and Acinetobacter lwoffii G5. This is the first study on the bacterial flora of Blatta orientalis evaluated for the biodegradation of α-endosulfan. After 10 days of incubation, the biodegradation yields obtained from P. aeruginosa G1, S. maltophilia G2, B. atrophaeus G3, C. amolonaticus G4 and A. lwoffii G5 were 88.5% , 85.5%, 64.4%, 56.7% and 80.2%, respectively. As a result, these bacterial strains may be utilized for biodegradation of endosulfan polluted soil and environments.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

65

Numer

1

Opis fizyczny

p.63-68,fig.,ref.

Twórcy

autor
  • Department of Biology, Science Faculty, Ataturk University, Erzurum, Turkey
  • Ispir Hamza Polat Vocational School, Ataturk University, Ispir, Erzurum, Turkey
autor
  • Department of Biology, Science Faculty, Ataturk University, Erzurum, Turkey
autor
  • Department of Biology, Science Faculty, Ataturk University, Erzurum, Turkey

Bibliografia

  • Bajaj A., A. Pathak, M.R. Mudiam, S. Mayilraj and N. Manickam. 2010. Isolation and characterization of a Pseudomonas sp. strain IITR01 capable of degrading α‐endosulfan and endosulfan sulfate. J. Appl. Microbiol. 109: 2135–2143.
  • Basile F., M.B. Beverly and K.J. Voorhees. 1998. Pathogenic bacteria: their detection and differentiation by rapid lipid profiling with pyrolysis mass spectrometry. Trends Analyt. Chem. 17: 95–109.
  • Benson H.J. 2001. Microbiological Applications Laboratory Manual. Laboratory Manual for General Microbiology. Eighth Edition. The McGraw-Hill Companies, New York.
  • Bhattacharjee K., S. Banerjee, L. Bawitlung, D. Krishnappa and S.R. Joshi. 2014. A study on parameters optimization for degradation of endosulfan by bacterial consortia isolated from contaminated soil. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 84: 657–6676.
  • Castillo J.M., J. Casas and E. Romero. 2011. Isolation of an endosulfan-degrading bacterium from a coffee farm soil: Persistence and inhibitory effect on its biological functions. Sci. Total Environ. 412: 20–27.
  • David F., B. Tienpont and P. Sandra. 2008. Chemotaxonomy of bacteria by comprehensive GC and GC-MS in electron impact and chemical ionisation mode. J. Sep. Sci. 31: 3395–3403.
  • De Boever P., P. Ilyin, V. Forget-Hanus, G. Van der Auwera,J. Mahillon and M. Mergeay. 2007. Conjugation-mediated plasmid exchange between bacteria grown under space flight conditions. Microgravity Sci. Technol. 19: 5–6.
  • De Gelder L., J.J. Williams, J.M. Ponciano, M. Sota and E.M. Top. 2008. Adaptive plasmid evolution results in host-range expansion of a broad-host-range plasmid. Genetics 178: 2179–2190.
  • Dillon R.J. and V.M. Dillon. 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49: 71–92.
  • Dorough, H.W., K. Huhtanen, T.C. Marshall and H.E. Bryant. 1978. Fate of endosulfan in rats and toxicological considerations of apolar metabolites. Pestic Biochem. Physiol. 8: 241–252.
  • Fan S. 2007. Draft Endosulfan Risk Characterization Document: Volume III – Environmental Fate. Department of Pesticide Regulation, Environmental Monitoring Branch, California Environmental Protection Agency: Sacramento, CA, USA.
  • Fang J., M.J. Barcelona and P.J.J. Alvarez. 2000. A direct comparison between fatty acid analysis and intact phospholipid profiling for microbial identification. Org. Geochem. 31: 881–887.
  • Fotedar R., U.B. Shriniwas and A. Verma. 1991. Cockroaches (Blattella germanica) as carriers of microorganisms of medical importance in hospitals. Epidemiol. Infect. 107: 181–187.
  • Giacomini M., C. Ruggiero and L. Calegari. 2000. Artificial neuralnetwork based identification of environmental bacteria by gas-chro-matographic and electrophoretic data. J. Microbiol. Methods 43: 45–54.
  • Gill S.R., M. Pop, R.T. DeBoy, P.B. Eckburg, P.J. Turnbaugh,B.S. Samuel, J.I. Gordon, D.A. Relman, C.M. Fraser-Liggett and K.E. Nelson. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312: 1355–1359.
  • Goebel, H., Gorbach, S., Knauf, W., Rimpau, R.H. and H. Huttenbach. 1982. Properties, effects, residues and analytics of the insecticide endosulfan. Residue Rev. 83: 40–41.
  • Goswami S. and D.K. Singh. 2009. Biodegradation of a and b endosulfan in broth medium and soil microcosm by bacterial strain Bordetella sp. B9. Biodegradation 20: 199–207.
  • Gur O., M. Ozdal and O.F. Algur. 2014. Biodegradation of the synthetic pyrethroid insecticide α-cypermethrin by Stenotrophomonas maltophilia OG2. Turk. J. Biol. 38: 684–689.
  • Holt J.G., N.R. Krieg, P.H.A. Sneath, J.T. Staley and S.T. Williams. 1994. Bergey’s Manual of Determinative Bacteriology, 9th ed. Lippincott Williams and Wilkins, Baltimore.
  • Hussain S., M. Arshad, M. Saleem and A. Khalid. 2007. Biodegradation of α- and β-endosulfan by soil bacteria. Biodegradation 18: 731–740.
  • Hussain S., M. Arshad, B. Shaharoona, M. Saleem and A. Khalid. 2009. Concentration dependent growth/non-growth linked kinetics of endosulfan biodegradation by Pseudomonas aeruginosa. World J. Microbiol. Biotechnol. 25: 853–858.
  • Ikemoto S., H. Kuraishi, K. Komagata, R. Azuma, T. Suto and H. Muroka. 1978. Cellular fatty acid composition in Pseudomonas species. J. Gen. Appl. Microbiol. 24: 199–213.
  • Kaneda T. 1977. Fatty Acids of the Genus Bacillus: an Example of Branched-Chain Preference. Bacteriol Rev. 41: 391–418.
  • Kataoka R and K. Takagi. 2013. Biodegradability and biodegradation pathways of endosulfan and endosulfan sulphate. Appl. Microbiol. Biotechnol. 97: 3285–3292.
  • Kikuchi Y., M. Hayatsu, T. Hosokawa, A. Nagayama, K. Tago and T. Fukatsu. 2012. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. 109: 8618–8622.
  • Kong L., S. Zhu, L. Zhu, H. Xie, K. Su, T. Yan, J. Wang, J. Wang,F. Wang and F. Sun. 2013. Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. J. Environ. Sci. 25: 2257–2264.
  • Kumar K., S.S. Devi, K. Krishnamurthi, G.S. Kanade and T. Chakrabarti. 2007. Enrichment and isolation of endosulfan degrading and detoxifying bacteria. Chemosphere 68: 317–322.
  • Kumar A., N. Bhoot, I. Soni and P.J. John. 2014. Isolation and characterization of a Bacillus subtilis strain that degrades endosulfan and endosulfan sulfate. 3 Biotech. 4: 467–475.
  • Lu Y., K. Morimoto, T. Takeshita, T. Takeuchi and T. Saito. 2000. Genotoxic effects of α-endosulfan and β-endosulfan on human HepG2 cells. Environ. Health Perspect. 108: 559–561.
  • Moss C.W., P.L. Wallace, D.G. Hollis and R.E. Weaver. 1988. Cultural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis. J. Clin. Microbiol. 26: 484–492.
  • Okay S., M. Ozdal and E.B. Kurbanoğlu. 2013. Characterization, antifungal activity and cell immobilization of a chitinase from Serratia marcescens MO-1. Turk. J. Biol. 37: 639–644.
  • Ozdal M., U. Incekara, A. Polat, O. Gur, E.B. Kurbanoğlu and G.E. Tasar. 2012. Isolation of filamentous fungi associated with two common edible aquatic insects, Hydrophilus piceus and Dytiscus marginalis. J. Microbiol. Biotechnol. Food Sci. 2: 95–105.
  • Pai H., W.C. Chen and C.F. Peng. 2005. Isolation of bacteria with antibiotic resistance from household cockroaches (Periplaneta americana and Blattella germanica). Acta Trop. 93: 259–265.
  • Reeson A.F., T. Jankovic, M.L. Kasper, S. Rogers and A.D. Austin. 2003. Application of 16S rDNA-DGGE to examine the microbial ecology associated with a social wasp Vespula germanica. Insect Mol. Biol. 12: 85–91.
  • Siddique T., B.C. Okeke, M. Arshad and W.T.J. Frankenberger. 2003. Enrichment and isolation of endosulfan degrading microorganisms. J. Environ. Qual. 32: 47–54.
  • Singh N.S. and D.K. Singh. 2011. Biodegradation of endosulfan and endosulfan sulfate by Achromobacter xylosoxidans strain C8B in broth medium. Biodegradation 22: 845–857.
  • Sutherland T.D., I. Horne, M.J. Lacey, R.L. Harcourt, R.J. Russell and J.G. Oakeshott. 2000. Enrichment of an endosulfan-degrading mixed bacterial culture. Appl. Environ. Microbiol. 66: 2822–2828.
  • Thangadurai P. and S. Suresh. 2014. Biodegradation of endosulfan by soil bacterial cultures. Int. Biodeterior. Biodegradation 94: 38–47.
  • Vancanneyt M., S. Witt, W.R. Abraham, K. Kersters and H.L. Fredrickson. 1996. Fatty acid content in wholecell hycrolysates and phospholipid fractions of pseudomonads: A taxonomic evaluation. Syst. Appl. Microbiol. 19: 528–540.
  • Verma A., D. Ali, M. Farooq, A.B. Pant, R.S. Ray and R.K. Hans. 2011. Expression and inducibility of endosulfan metabolizing gene in Rhodococcus strain isolated from earthworm gut microflora for its application in bioremediation. Bioresour. Technol. 102: 2979–2984.
  • Werren J.H. 2012. Symbionts provide pesticide detoxification. Proc. Natl. Acad. Sci. 109: 8364–8365.
  • Whittaker P., C.E. Keys, E.W. Brown and F.S. Fry. 2007. Differentiation of Enterobacter sakazakii from closely related Enterobacter and Citrobacter species using fatty acid profiles. J. Agric. Food Chem. 55: 4617–4623.
  • Yu F.B., W.A. Shinawar, J.Y. Sun and L.P. Luo. 2012. Isolation and characterization of an endosulfan degrading strain, Stenotrophomonas sp. LD-6, and its potential in soil bioremediation. Pol. J. Microbiol. 61: 257–262.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-90034f3c-5f0d-4ac9-b615-d45e279c0f58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.