PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 1 |

Tytuł artykułu

Glutathione-dependent responses of plants to drought: a review

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Water is a renewable resource. However, with the human population growth, economic development and improved living standards, the world’s supply of fresh water is steadily decreasing and consequently water resources for agricultural production are limited and diminishing. Water deficiency is a significant problem in agriculture and increasing efforts are currently being made to understand plant tolerance mechanisms and to develop new tools (especially molecular) that could underpin plant breeding and cultivation. However, the biochemical and molecular mechanisms of plant water deficit tolerance are not fully understood, and the data available is incomplete. Here, we review the significance of glutathione and its related enzymes in plant responses to drought. Firstly, the roles of reduced glutathione and reduced/ oxidized glutathione ratio, are discussed, followed by an extensive discussion of glutathione related enzymes, which play an important role in plant responses to drought. Special attention is given to the S-glutathionylation of proteins, which is involved in cell metabolism regulation and redox signaling in photosynthetic organisms subjected to abiotic stress. The review concludes with a brief overview of future perspectives for the involvement of glutathione and related enzymes in drought stress responses.

Wydawca

-

Rocznik

Tom

83

Numer

1

Opis fizyczny

p.3-12,fig.,ref.

Twórcy

autor
  • Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Department of Biotechnology and Genetic Engineering, University of Development Alternative, 80 Satmasjid Road, Dhanmondi R/A, Dhaka-1209, Bangladesh

Bibliografia

  • 1. Nayyar H, Gupta D. Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants.Env Exp Bot. 2006;58(1–3):106–113. http://dx.doi.org/10.1016/j.envexpbot.2005.06.021
  • 2. Monakhova OF, Chernyad’ev II. Protective role of kartolin-4 in wheat plants exposed to soil draught. Appl Biochem Microbiol. 2002;38(4):373–380. http://dx.doi.org/10.1023/A:1016243424428
  • 3. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, et al. Signal transduction during cold, salt, and drought stresses in plants. Mol BiolRep. 2012;39(2):969–987. http://dx.doi.org/10.1007/s11033-011-0823-1
  • 4. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–410. http://dx.doi.org/10.1016/S1360-1385(02)02312-9
  • 5. Anjum SA, Wang L, Farooq M, Khan I, Xue L. Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system andyield in soybean under drought. J Agron Crop Sci. 2011;197(4):296–301. http://dx.doi.org/10.1111/j.1439-037X.2011.00468.x
  • 6. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:1–26. http://dx.doi.org/10.1155/2012/217037
  • 7. Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:249–279. http://dx.doi.org/10.1146/annurev.arplant.49.1.249
  • 8. Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17(7):1866–1875. http://dx.doi.org/10.1105/tpc.105.033589
  • 9. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem.2010;48(12):909–930. http://dx.doi.org/10.1016/j.plaphy.2010.08.016
  • 10. Boguszewska D, Zagdańska B. ROS as signaling molecules and enzymes of plant response to unfavorable environmental conditions. In:Lushchak V, Semchyshyn HM, editors. Oxidative stress – molecularmechanisms and biological effects. Rijeka, Croatia: InTech; 2012. p.341–362. http://dx.doi.org/10.5772/33589
  • 11. Zagorchev L, Seal C, Kranner I, Odjakova M. A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci. 2013;14(4):7405–7432.http://dx.doi.org/10.3390/ijms14047405
  • 12. Boguszewska D, Grudkowska M, Zagdańska B. Drought-responsive antioxidant enzymes in potato (Solanum tuberosum L.). Potato Res.2010;53(4):373–382. http://dx.doi.org/10.1007/s11540-010-9178-6
  • 13. Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez- Garcia B, et al. Glutathione in plants: an integrated overview.Plant Cell Env. 2012;35(2):454–484. http://dx.doi.org/10.1111/j.1365-3040.2011.02400.x
  • 14. Zechmann B, Müller M. Subcellular compartmentation of glutathione in dicotyledonous plants. Protoplasma. 2010;246(1–4):15–24. http://dx.doi.org/10.1007/s00709-010-0111-2
  • 15. Wachter A, Wolf S, Steininger H, Bogs J, Rausch T. Differential targeting of GSH1 and GSH2 is achieved by multiple transcriptioninitiation: implications for the compartmentation of glutathionebiosynthesis in the Brassicaceae. Plant J. 2005;41(1):15–30. http://dx.doi.org/10.1111/j.1365-313X.2004.02269.x
  • 16. Sengupta D, Ramesh G, Mudalkar S, Kumar KRR, Kirti PB, Reddy AR. Molecular cloning and characterization of γ-glutamyl cysteinesynthetase (VrγECS) from roots of Vigna radiata (L.) Wilczekunder progressive drought stress and recovery. Plant Mol Biol Rep.2012;30(4):894–903. http://dx.doi.org/10.1007/s11105-011-0398-y
  • 17. Nazar R, Iqbal N, Masood A, Syeed S, Khan NA. Understanding the significance of sulfur in improving salinity tolerance in plants.Env. Exp Bot. 2011;70(2–3):80–87. http://dx.doi.org/10.1016/j.envexpbot.2010.09.011
  • 18. Lim B, Meyer AJ, Cobbett CS. Development of glutathione-deficient embryos in Arabidopsis is influenced by the maternal level of glutathione. Plant Biol Stuttg. 2011;13(4):693–697. http://dx.doi. org/10.1111/j.1438-8677.2011.00464.x
  • 19. El Msehli S, Lambert A, Baldacci-Cresp F, Hopkins J, Boncompagni E, Smiti SA, et al. Crucial role of (homo)glutathione in nitrogen fixationin Medicago truncatula nodules. New Phytol. 2011;192(2):496–506.http://dx.doi.org/10.1111/j.1469-8137.2011.03810.x
  • 20. Cruz de Carvalho MH, Brunet J, Bazin J, Kranner I, d’Arcy-Lameta A, Zuily-Fodil Y, et al. Homoglutathione synthetase and glutathionesynthetase in drought-stressed cowpea leaves: expression patternsand accumulation of low-molecular-weight thiols. J Plant Physiol.2010;167(6):480–487. http://dx.doi.org/10.1016/j.jplph.2009.10.023
  • 21. Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR, et al. The response of carbon metabolism and antioxidant defensesof alfalfa nodules to drought stress and to the subsequent secoveryof plants. Plant Physiol. 2007;144(2):1104–1114. http://dx.doi.org/10.1104/pp.107.099648
  • 22. Sgherri CLM, Navari-Izzo F. Sunflower seedlings subjected to increasing water deficit stress: oxidative stress and defencemechanisms. Physiol Plant. 1995;93(1):25–30. http://dx.doi.org/10.1034/j.1399-3054.1995.930105.x
  • 23. Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D. Complex interactive effects of drought and ozone stress on theantioxidant defence systems of two wheat cultivars. Plant PhysiolBiochem. 2002;40(6–8):691–696. http://dx.doi.org/10.1016/S0981-9428(02)01410-9
  • 24. Pyngrope S, Bhoomika K, Dubey RS. Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism indrought-sensitive and tolerant indica rice (Oryza sativa L.) seedlingssubjected to progressing levels of water deficit. Protoplasma.2013;250(2):585–600. http://dx.doi.org/10.1007/s00709-012-0444-0
  • 25. Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, et al. Modulation of glutathione and its related enzymes in plants’responses to toxic metals and metalloids – a review. Env Exp Bot.2012;75:307–324. http://dx.doi.org/10.1016/j.envexpbot.2011.07.002
  • 26. Tausz M, Wonisch A, Peters J, Jiménez MS, Morales D, Grill D. Short-term changes in free radical scavengers and chloroplast pigments in Pinus canariensis needles as affected by mild drought stress. J Plant Physiol. 2001;158(2):213–219. http://dx.doi.org/10.1078/0176-1617-00178
  • 27. Anwar Hossain M, Golam Mostofa M, Fujita M. Heat-shock positively modulates oxidative protection of salt and drought-stressedmustard (Brassica campestris L.) seedlings. J Plant Sci Mol Breed. 2013;2(1):1–14. http://dx.doi.org/10.7243/2050-2389-2-2
  • 28. Alam MM, Hasanuzzaman M, Nahar K, Fujita M. Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica junceaL.) seedlings by up-regulating the antioxidant defense and glyoxalasesystem. Aust J Crop Sci. 2013;7(7):1053–1063.
  • 29. Liu D, Pei ZF, Naeem MS, Ming DF, Liu HB, Khan F, et al. 5-aminolevulinic acid activates antioxidative defence system and seedling growth in Brassica napus L. under water-deficit stress. J Agron Crop Sci. 2011;197(4):284–295. http://dx.doi.org/10.1111/j.1439-037X.2011.00465.x
  • 30. Dhindsa RS. Drought stress, enzymes of glutathione metabolism, oxidation injury, and protein synthesis in Tortula ruralis. Plant Physiol.1991;95(2):648–651. http://dx.doi.org/10.1104/pp.95.2.648
  • 31. Pourtaghi A, Darvish F, Habibi D, Nourmohammadi G, Daneshian J. Effect of irrigation water deficit on antioxidant activity and yield ofsome sunflower hybrids. Aust J Crop Sci. 2011;5(2):197–204.
  • 32. Masoumi H, Masoumi M, Darvish F, Daneshian J, Nourmohammadi G, Habibi D. Change in several antioxidant enzymes activity and seedyield by water deficit stress in soybean (Glycine max L.) cultivars. BotHort Agrobot Cluj. 2010;38(3):86–94.
  • 33. Sayfzadeh S, Rashidi M. Response of antioxidant enzymes activities of sugar beet to drought stress. J Agric Biol Sci. 2011;6(4):27–33.
  • 34. Gaber A, Yoshimura K, Yamamoto T, Yabuta Y, Takeda T, Miyasaka H, et al. Glutathione peroxidase-like protein of Synechocystis PCC6803 confers tolerance to oxidative and environmental stresses intransgenic Arabidopsis. Physiol Plant. 2006;128(2):251–262. http://dx.doi.org/10.1111/j.1399-3054.2006.00730.x
  • 35. Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, et al. An Arabidopsis glutathione peroxidase functions as both a redox transducer and ascavenger in abscisic acid and drought stress responses. Plant Cell.2006;18(10):2749–2766. http://dx.doi.org/10.1105/tpc.106.044230
  • 36. Kojić D, Pajević S, Jovanović-Galović A, Purać J, Pamer E, Škondrić S, et al. Efficacy of natural aluminosilicates in moderating drought effects on the morphological and physiological parameters of maize plants (Zea mays L.). J Soil Sci Plant Nutr. 2012;12(1):113–123. http://dx.doi.org/10.4067/S0718-95162012000100010
  • 37. Gallé A, Csiszár J, Secenji M, Guóth A, Cseuz L, Tari I, et al. Glutathione transferase activity and expression patterns during grain filling inflag leaves of wheat genotypes differing in drought tolerance: responseto water deficit. J Plant Physiol. 2009;166(17):1878–1891. http://dx.doi.org/10.1016/j.jplph.2009.05.016
  • 38. Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, et al. Drought and salt stress tolerance of an Arabidopsis glutathione StransferaseU17 knockout mutant are attributed to the combined effectof glutathione and abscisic acid. Plant Physiol. 2012;158(1):340–351.http://dx.doi.org/10.1104/pp.111.181875
  • 39. George S, Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopisjuliflora confer drought tolerance on tobacco. J Plant Physiol.2010;167(4):311–318. http://dx.doi.org/10.1016/j.jplph.2009.09.004
  • 40. Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, et al. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco.Biotechnol Lett. 2010;32(8):1173–1179. http://dx.doi.org/10.1007/s10529-010-0269-x
  • 41. Ratnayaka HH, Molin WT, Sterling TM. Physiological and antioxidant responses of cotton and spurred anoda under interference andmild drought. J Exp Bot. 2003;54(391):2293–2305. http://dx.doi.org/10.1093/jxb/erg251
  • 42. Lei Y, Yin C, Li C. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant. 2006;127(2):182–191.http://dx.doi.org/10.1111/j.1399-3054.2006.00638.x
  • 43. Pinheiro HA, DaMatta FM, Chaves ARM, Fontes EPB, Loureiro ME. Drought tolerance in relation to protection against oxidativestress in clones of Coffea canephora subjected to long-termdrought. Plant Sci. 2004;167(6):1307–1314. http://dx.doi.org/10.1016/j.plantsci.2004.06.027
  • 44. Singh S, Gupta AK, Kaur N. Differential responses of antioxidative defence system to long-term field drought in wheat(Triticum aestivum L.) genotypes differing in drought tolerance.J Agron Crop Sci. 2012;198(3):185–195. http://dx.doi.org/10.1111/j.1439-037X.2011.00497.x
  • 45. Ünyayar S, Çekiç FÖ. Changes in antioxidative enzymes of young and mature leaves of tomato seedlings under drought stress. Turk JBiol. 2006;29(4):211–216.
  • 46. Kang GZ, Li GZ, Liu GQ, Xu W, Peng XQ, Wang CY, et al. Exogenous salicylic acid enhances wheat drought tolerance by influence on theexpression of genes related to ascorbate-glutathione cycle. Biol Plant.2013;57(4):718–724. http://dx.doi.org/10.1007/s10535-013-0335-z
  • 47. Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M. Oxidative amage in pea plants xxposed to water deficit or paraquat. Plant Physiol. 1998;116(1):173–181. http://dx.doi.org/10.1104/pp.116.1.173
  • 48. Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A. Protein S-glutathionylation: a regulatory device from bacteria to humans.Trends Biochem Sci. 2009;34(2):85–96. http://dx.doi.org/10.1016/j.tibs.2008.11.002
  • 49. Zaffagnini M, Bedhomme M, Groni H, Marchand CH, Puppo C, Gontero B, et al. Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey. Mol Cell Proteomics. 2012;11(2):M111.014142. http://dx.doi.org/10.1074/mcp.M111.014142
  • 50. Colville L, Kranner I. Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regul.2010;62(3):241–255. http://dx.doi.org/10.1007/s10725-010-9482-9
  • 51. Talukdar T, Gorecka KM, de Carvalho-Niebel F, Downie JA, Cullimore J, Pikula S. Annexins - calcium- and membrane-binding proteins in the plant kingdom: potential role in nodulation and mycorrhizationin Medicago truncatula. Acta Biochim Pol. 2009;56(2):199–210.
  • 52. Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, et al. The role of annexin 1 in drought stress in Arabidopsis.Plant Physiol. 2009;150(3):1394–1410. http://dx.doi.org/10.1104/pp.109.135228
  • 53. Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot. 2011;62(14):4731–4748. http://dx.doi. org/10.1093/jxb/err210
  • 54. Hamill JD. Gene expression modified by external factors. In: Turnbull CGN, Atwell BJ, Kriedemann PE, editors. Plants in action. Adaptationin nature, performance in cultivation. Melbourne, Australia: MacmillanEducation Australia Pty Ltd; 1999. p. 10.3.4.
  • 55. Rai GK, Rai NP, Rathaur S, Kumar S, Singh M. Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates drought-inducedoxidative stress by regulating key enzymatic and non-enzymaticantioxidants. Plant Physiol Biochem. 2013;69:90–100. http://dx.doi.org/10.1016/j.plaphy.2013.05.002
  • 56. Pandey HC, Baig MJ, Chandra A, Bhatt RK. Drought stress induced changes in lipid peroxidation and antioxidant system in genus Avena. J Env. Biol. 2010;31(4):435–440.
  • 57. Chowdhury SR, Choudhuri MA. Hydrogen peroxide metabolism as an index of water stress tolerance in jute. Physiol Plant. 1985;65(4):476–480. http://dx.doi.org/10.1111/j.1399-3054.1985.tb08676.x
  • 58. Wang S, Liang D, Li C, Hao Y, Ma F, Shu H. Influence of drought stress on the cellular ultrastructure and antioxidant system inleaves of drought-tolerant and drought-sensitive apple rootstocks.Plant Physiol Biochem. 2012;51:81–89. http://dx.doi.org/10.1016/j.plaphy.2011.10.014
  • 59. Bai LP, Sui FG, Ge TD, Sun ZH, Lu YY, Zhou GS. Effect of soil drought stress on leaf water status, membrane permeability and enzymaticantioxidant system of maize. Pedosphere. 2006;16(3):326–332. http://dx.doi.org/10.1016/S1002-0160(06)60059-3
  • 60. Ali Q, Ashraf M. Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism.J Agron Crop Sci. 2011;197(4):258–271. http://dx.doi.org/10.1111/j.1439-037X.2010.00463.x
  • 61. Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM. Brassinolide application improves the drought tolerance in maizethrough modulation of enzymatic antioxidants and leaf gas exchange.J Agron Crop Sci. 2011;197(3):177–185. http://dx.doi.org/10.1111/j.1439-037X.2010.00459.x
  • 62. Anjum SA, Wang L, Farooq M, Xue L, Ali S. Fulvic acid application improves the maize performance under well-watered and droughtconditions. J Agron Crop Sci. 2011;197(6):409–417. http://dx.doi.org/10.1111/j.1439-037X.2011.00483.x
  • 63. Yildiz-Aktas L, Dagnon S, Gurel A, Gesheva E, Edreva A. Drought tolerance in cotton: involvement of non-enzymatic ROS-scavenging compounds. J Agron Crop Sci. 2009;195(4):247–253. http://dx.doi. org/10.1111/j.1439-037X.2009.00366.x
  • 64. Sairam RK, Shukla DS, Saxena DC. Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. BiolPlant. 1997;40(3):357–364. http://dx.doi.org/10.1023/A:1001009812864
  • 65. Marcińska I, Czyczyło-Mysza I, Skrzypek E, Grzesiak MT, Janowiak F, Filek M, et al. Alleviation of osmotic stress effects by exogenousapplication of salicylic or abscisic acid on wheat seedlings. Int J MolSci. 2013;14(7):13171–13193. http://dx.doi.org/10.3390/ijms140713171
  • 66. Zlatev ZS, Lidon FC, Ramalho JC, Yordanov IT. Comparison of resistance to drought of three bean cultivars. Biol Plant. 2006;50(3):389– 394. http://dx.doi.org/10.1007/s10535-006-0054-9
  • 67. Fazeli F, Ghorbanli M, Niknam V. Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesamecultivars. Biol Plant. 2007;51(1):98–103. http://dx.doi.org/10.1007/s10535-007-0020-1
  • 68. Mohammadi A, Habibi D, Rohami M, Mafakheri S. Effect of drought stress on antioxidant enzymes activity of some chickpea cultivars. Am-Eurasian J Agric Env Sci. 2011;11(6):782–785.
  • 69. Huang C, Zhao S, Wang L, Anjum SA, Chen M, Zhou H, et al. Alteration in chlorophyll fluorescence, lipid peroxidation and antioxidantenzymes activities in hybrid ramie (Boehmeria nivea L.) under droughtstress. Aust J Crop Sci. 2013;7(5):594.
  • 70. Štajner D, Orlović S, Popović BM, Kebert M, Galić Z. Screening of drought oxidative stress tolerance in Serbian melliferous plant species. Afr J Biotechnol. 2011;10(9):1609–1614.
  • 71. Habibi G, Hajiboland R. Alleviation of drought stress by silicon supplementation in pistachio (Pistacia vera L.) plants. Folia Hort.2013;25(1):21–29. http://dx.doi.org/10.2478/fhort-2013-0003
  • 72. El-Enany AE, AL-Anazi AD, Dief N, Al-Taisan WA. Role of antioxidant enzymes in amelioration of water deficit and waterlogging stresses onVigna sinensis plants. J Biol Earth Sci. 2013;3(1):B144–B153.
  • 73. Farissi M, Bouizgaren A, Faghire M, Bargaz A, Ghoulam C. Agrophysiological and biochemical properties associated with adaptationof Medicago sativa populations to water deficit. Turk J Bot.2013;37:1166–1175. http://dx.doi.org/10.3906/bot-1211-16
  • 74. Yobi A, Wone BWM, Xu W, Alexander DC, Guo L, Ryals JA, et al. Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccationtolerance. Mol Plant. 2013;6(2):369–385. http://dx.doi.org/10.1093/mp/sss155
  • 75. Bednarski W, Hendry G, Atherton N, Lee J. Radical formation and accumulation in vivo, in desiccation tolerant and intolerant mosses.Free Radic Res Commun. 1991;15(3):133–141.
  • 76. Shi H, Wang Y, Cheng Z, Ye T, Chan Z. Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responsesunderlying drought tolerance. PLoS ONE. 2012;7(12):e53422. http://dx.doi.org/10.1371/journal.pone.0053422
  • 77. Zhang Y, Zhang Q, Sammul M. Physiological integration ameliorates negative effects of drought stress in the clonal herb Fragaria orientalis.PLoS ONE. 2012;7(9):e44221. http://dx.doi.org/10.1371/journal.pone.0044221
  • 78. Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays. 2006;28(11):1091–1101. http://dx.doi.org/10.1002/bies.20493
  • 79. Masoumi H, Darvish F, Daneshian J, Normohammadi G, Habibi D. Effects of water deficit stress on seed yield and antioxidants content insoybean (Glycine max L.) cultivars. Afr J Agr Res. 2011;6(5):1209–1218.http://dx.doi.org/10.5897/AJAR10.821

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8fd4e8a9-0464-4a3f-a7f9-8c4709df4a18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.