EN
The paper presents the results of the research focused on linear and nonlinear wave generation and propagation in a deepwater towing tank equipped with a single flap-type wavemaker of variable draft. The problem of wave generation and propagation has been theoretically formulated and solved by applying an analytical method; linear and nonlinear solutions were obtained. The linear solution has been verified experimentally. The laboratory experiments confirmed that a linear model can be applied to predict the generation and propagation of water waves of low steepness. However, according to the analysis, the discrepancies between wave profiles predicted by applying the linear and nonlinear models rapidly increases with increasing wave steepness. Additionally, the secondary phenomena which occur in the towing tank, including: disintegration of wave profile, wave reflections from the beach and wave damping, were analyzed. Knowledge on the nonlinear processes and phenomena is essential for modeling the environmental conditions during tests carried out to secure the safety of the naval and offshore constructions. The theoretical formulation was derived and the solution was obtained by the Institute of Hydroengineering of the Polish Academy of Sciences IBW PAN while the experimental research was carried out in Ship Hydromechanics Division of the Ship Design and Research Centre CTO S.A.