PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 11 |

Tytuł artykułu

Modifications of cell wall pectin in tomato cell suspension in response to cadmium and zinc

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Retention of metal cations by the cell wall is a common process found in plants in response to stress induced by the presence of trace metals (TMs). In this study conducted on a tomato cell suspension culture, cadmium (Cd) and zinc (Zn) were added to the medium at maximal concentrations of 0.5 and 2 mM, respectively. We showed that around 50 % of Zn or Cd was confined into the cell wall of tomato cells. Besides, their accumulation in the cell wall increased with the exogenous concentration in the culture medium. Characterization of cell wall pectins showed a decrease in the highly methylesterified pectin fraction whereas the weakly methylesterified pectin remained stable in response to Cd. Moreover, a significant increase in the degree of methylesterification was observed in both fractions. This was probably associated to the reduced pectin methylesterase (PME) activity in the treated cells. Furthermore, linked to a reduction of pectin content we showed a reduced expression of the galacturonosyltransferase QUA1 gene whereas PME1 expression remained unchanged. Taking together, these data strongly suggest that pectin biosynthesis and its modification in the cell wall are strongly regulated in response to TM exposure in tomato cells.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

11

Opis fizyczny

Article: 245 [11 p.], fig.,ref.

Twórcy

autor
  • Laboratoire de Chimie des Substances Naturelles, Université de Limoges, Faculté des Sciences et Techniques, 123 avenue Albert Thomas, 87060, Limoges Cedex, France
autor
  • Laboratoire de Chimie des Substances Naturelles, Université de Limoges, Faculté des Sciences et Techniques, 123 avenue Albert Thomas, 87060, Limoges Cedex, France
autor
  • Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, IRIB, VASI, 76821, Mont-Saint-Aignan, France
autor
  • Laboratoire de Chimie des Substances Naturelles, Université de Limoges, Faculté des Sciences et Techniques, 123 avenue Albert Thomas, 87060, Limoges Cedex, France
autor
  • Laboratoire de Chimie des Substances Naturelles, Université de Limoges, Faculté des Sciences et Techniques, 123 avenue Albert Thomas, 87060, Limoges Cedex, France

Bibliografia

  • Anthon GE, Barrett DM (2008) Combined enzymatic and colorimetric method for determining the uronic acid and methylester content of pectin: application to tomato products. Food Chem 110:239–247. doi:10.1016/j.foodchem.2008.01.042
  • Appenroth KJ (2010) What are ‘‘heavy metals’’ in plant sciences? Acta Physiol Plant 32:615–619. doi:10.1007/s11738-009-0455-4
  • Astier C, Gloaguen V, Faugeron C (2014) Phytoremediation of cadmium-contaminated soils by young Douglas fir trees: effects of cadmium exposure on cell wall composition. Int J Phytorem 16:790–803. doi:10.1080/15226514.2013.856849
  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489
  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Braidwood L, Breuer C, Sugimoto K (2014) My body is a cage: mechanisms and modulation of plant cell growth. New Phytol 201:388–402. doi:10.1111/nph.12473
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702. doi:10.1111/j.1469-8137.2007.01996.x
  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900. doi:10.1016/j.carres.2009.05.021
  • Cherif J, Mediouni C, Ben Ammar W, Jemal F (2011) Interactions of zinc and cadmium toxicity in their effects on growth and antioxidative systems in tomato plants (Solanum lycopersicum). J Env Sci 23:837–844. doi:10.1016/S1001-0742(10)60415-9
  • Clausen MH, Willats WGT, Knox JP (2003) Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr Res 338:1797–1800. doi:10.1016/S0008-6215(03)00272-6
  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719. doi:10.1016/S1360-1385(02)02295-1
  • Colzi I, Arnetoli M, Gallo A, Doumett S, Del Bubba M, Pignattelli S, Gabbrielli R, Gonnelli C (2012) Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Environ Exp Bot 78:91–98. doi:10.1016/j.envexpbot.2011.12.028
  • Dardelle F, Lehner A, Ramdani Y, Bardor M, Lerouge P, Driouich A, Mollet JC (2010) Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. Plant Physiol 153:1563–1576. doi:10.1104/pp.110.158881
  • Degenhardt B, Gimmler H (2000) Cell wall adaptations to multiple environmental stresses in maize roots. J Exp Bot 51:595–603. doi:10.1093/jexbot/51.344.595
  • Douchiche O, Rihouey C, Schaumann A, Driouich A, Morvan C (2007) Cadmium-induced alterations of the structural features of pectins in flax hypocotyls. Planta 225:1301–1312. doi:10.1007/s00425-006-0425-7
  • Douchiche O, Driouich A, Morvan C (2010) Spatial regulation of cell-wall structure in response to heavy metal stress: cadmiuminduced alteration of the methyl-esterification pattern of homogalacturonans. Ann Bot 105:481–491. doi:10.1093/aob/mcp306
  • Douchiche O, Driouich A, Morvan C (2011) Impact of cadmium on early stages of flax fibre differentiation: ultrastructural aspects and pectic features of cell walls. Plant Physiol Biochem 49:592–599. doi:10.1016/j.plaphy.2011.03.008
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugar and related substances. Anal Chem 28:350–356
  • Dumont M, Lehner A, Bouton S, Kiefer-Meyer MC, Voxeur A, Pelloux J, Lerouge P, Mollet JC (2014) The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implication of a putative sialyltransferase-like protein. Ann Bot 114:1177–1188. doi:10.1093/aob/mcu093
  • El-Moneim DA, Contreras R, Silva-Navas J, Gallego FJ, Figueiras AM, Benito C (2014) Pectin methylesterase gene and aluminum tolerance in Secale cereale. Env Exp Bot 107:125–133. doi:10. 1016/j.envexpbot.2014.06.006
  • Fernández R, Fernández-Fuego D, Bertrand A, González A (2014) Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids. Plant Physiol Biochem 78:63–70. doi:10.1016/j.plaphy. 2014.02.021
  • Goel D, Singh AK, Yadav V, Babbar SB, Bansal KC (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245:133–141. doi:10.1007/s00709-010-0158-0
  • Gribaa A, Dardelle F, Lehner A, Rihouey C, Burel C, Ferchichi A, Driouich A, Mollet JC (2013) Effect of water deficit on the cell wall of the date palm (Phoenix dactylifera ‘Degletnour’, Arecales) fruit during development. Plant, Cell Environ 36:1056–1070. doi:10.1111/pce.12042
  • Gupta B, Pathak GC, Pandey N (2011) Induction of oxidative stress and antioxidant responses in Vigna mungo by zinc stress. Russian J Plant Physiol 58:85–91. doi:10.1134/S102144371101007
  • Han Y, Sa G, Sun J, Shen Z, Zhao R, Ding M, Deng S, Lu Y, Zhang Y, Shen X, Chen S (2014) Overexpression of Populus euphratica xyloglucanendotransglucosylase/hydrolase gene confers enhanced cadmium tolerance by the restriction of root cadmium uptake in transgenic tobacco. Environ Exp Bot 100:74–83. doi:10.1016/j.envexpbot.2013.12.021
  • Harholt J, Suttangkakul A, Scheller HV (2010) Biosynthesis of pectin. Plant Physiol 153:384–395. doi:10.1104/pp.110.156588
  • Inouhe M, Mitsumune M, Tohoyama H, Joho M, Muruyama T (1991) Contributions of cell wall and metal binding peptide to Cd- and Cu-tolerances in suspension-cultures cells of tomato. Bot Mag 104:217–229
  • Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1-4)-β-D-galactan. Plant Physiol 113:1405–1412
  • Kamerling JP, Gerwig G, Vliegenthart JF, Clamp JR (1975) Characterization by gas-liquid chromatography-mass spectrometry and proton-magnetic-resonance spectroscopy of pertrimethylsilyl methyl glycosides obtained in the methanolysis of glycoproteins and glycopeptides. Biochem J 151:491–495
  • Klavons JA, Bennett RD (1986) Determination of methanol using alcohol oxidase and its application to methylester content of pectins. J Agric Food Chem 34:597–599
  • Konno H, Nakato T, Nakashima S, Katoh K (2005) Lygopodium japonicum fern accumulates copper in the cell wall pectin. J Exp Bot 56:1923–1931. doi:10.1093/jxb/eri187
  • Krzeslowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51. doi:10.1007/s11738-010-0581-z
  • Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112–166. doi:10.3390/plants4010112
  • Leboeuf E, Guillon F, Thoiron S, Lahaye M (2005) Biochemical and immunohistochemical analysis of pectic polysaccharides in the cell walls of Arabidopsis mutant QUASIMODO 1 suspensioncultured cells: implications for cell adhesion. J Exp Bot 56:3171–3182. doi:10.1093/jxb/eri314
  • Leucci MR, Lenucci MS, Piro G, Dalessandro G (2008) Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. J Plant Physiol 165:1168–1180. doi:10.1016/j.jplph.2007.09.006
  • Liu J, Ma J, He C, Li X, Zhang W, Xu F, Lin Y, Wang L (2013) Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon. New Phytol 200:691–699. doi:10.1111/nph.12494
  • Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Longdistance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562. doi:10.1016/j.pbi.2011.07.004
  • Meychik N, Nikolaeva Y, Kushunina M, Yermakov I (2014) Are the carboxyl groups of pectin polymers the only metal binding sites in plant cell walls? Plant Soil 381:25–34. doi:10.1007/s11104-014-2111-z
  • Meyer CL, Juraniec M, Huguet S, Chaves-Rodriguez E, Salis P, Isaure MP, Goormaghtigh E, Verbruggen N (2015) Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri. J Exp Bot 66:3215–3227. doi:10.1093/jxb/erv144
  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419.doi:10.1016/S1360-1385(01)02045-3
  • Montreuil J, Bouquelet S, Debray H, Fournet B, Spik G, Strecker G (1986) Glycoproteins. In: Chaplin MF, Kennedy JF (eds) Carbohydrate analysis: a practical approach. IRL Press, Oxford (UK), pp 143–204
  • Muschitz A, Faugeron C, Morvan H (2009) Response of cultured tomato cells subjected to excess zinc: role of cell wall in zinc compartmentation. Acta Physiol Plant 31:1197–1204. doi:10.1007/s11738-009-0354-8
  • O’Neill MA, York WS (2003) The composition and structures of plant primary cell walls. In: Rose JKC (ed) Annual plant reviews. The plant cell wall. CRC Press, Boca Raton, vol 8, pp 1–54
  • Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman J-F (2015) Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front Plant Sci 6:133. doi:10.3389/fpls.2015.00133
  • Paynel F, Schaumann A, Arkoun M, Douchiche O, Morvan C (2009) Temporal regulation of cell-wall pectin methylesterase and peroxidase isoforms in cadmium-treated flax hypocotyls. Ann Bot 104:1363–1372. doi:10.1093/aob/mcp254
  • Pelloux J, Rustérucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277. doi:10.1016/j.tplants.2007.04.001
  • Reca IB, Lionetti V, Camardella L, D’Avino R, Giardina T, Cervone F, Bellincampi D (2012) A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1. Plant Mol Biol 79:429–442. doi:10.1007/s11103-012-9921-2
  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectin: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967. doi:10.1016/S0031-9422(01)00113-3
  • Sanitá Di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130. doi:10.1016/S0098-8472(98)00058-6
  • Sénéchal F, Wattier C, Rustérucci C, Pelloux J (2014) Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J Exp Bot 65:5125–5160. doi:10.1093/jxb/eru272
  • Sousa AI, Caçador I, Lillebø AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extracellular metal binding sites. Chemosphere 70:850–857. doi:10.1016/j.chemosphere.2007.07.012
  • Sun J, Cui J, Luo C, Gao L, Chen Y, Shen Z (2013) Contribution of cell walls, nonproteinthiols, and organic acids to cadmium resistance in two cabbage varieties. Arch Environ Contam Toxicol 64:243–252. doi:10.1007/s00244-012-9824-x
  • Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tiss Organ Cult 88:201–216. doi:10.1007/s11240-006-9192-1
  • Wang X, Liu Y, Zeng G, Chai L, Song X, Min Z, Xiao X (2008) Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ Exp Bot 62:389–395. doi:10.1016/j.envexpbot.2007.10.014
  • Willats WGT, McCartney L, Mackie W, Knox JP (2001) Pectins: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27. doi:10.1023/A:1010662911148
  • Xu W, Shi W, Yan F, Zhang B, Liang J (2011) Mechanisms of cadmium detoxification in cattail (Typha angustifolia L.). Aqua Bot 94:37–43. doi:10.1016/j.aquabot.2010.11.002
  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76:167–179. doi:10.1016/j. sajb.2014.07.012
  • Zhu XF, Wang ZW, Dong F, Lei GJ, Shi YZ, Li GX, Zheng SJ (2013) Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. J Hazard Mater 263:398–403. doi:10.1016/j.jhazmat.2013.09.018
  • Zhu XF, Sun Y, Zhang BC, Mansoori N, Wan JX, Liu Y, Wang ZW, Shi YZ, Zhou YH, Zheng SJ (2014) TRICHOME BIREFRINGENCE-LIKE27affects Aluminum sensitivity by modulating the O-acetylation of xyloglucan and aluminum-binding capacity in Arabidopsis. Plant Physiol 66:181–189. doi:10.1104/pp.114.243808

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8efd22e4-2c64-41de-8d41-b09a36eed22b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.