Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2015 | 73 |

Tytuł artykułu

Accumulation of iron-binding compounds in root of Pinus sylvestris challenged by Heterobasidion annosum sensu lato

Treść / Zawartość

Warianty tytułu

Języki publikacji



We examined the interaction between the roots of Pinus sylvestris and closely related species Heterobasidion annousum s.l. (H. annosum s.s., H. parviporum, H. abietinum) that differ in host plant preference. The aim of the current study was to determine in roots the accumulation pattern of low molecular mass compounds such as catecholate and hydroxamate derivates, oxalic acid as well as iron-reduction ability of that low molecular mass compounds, that play important roles in wood degradation and they are also involved in pathogenesis. The accumulation of catechol and hydroxamate derivates increased during the early (2–6 h) and late (24–48 h) stages of interaction and similar pattern of oxalic acid accumulation were observed. The level of catecholate derivates in P. sylvestris roots that were challenged with H. parviporum or H. abietinum correlated strongly with iron reducing ability. However, when host was exposed to H. annosum s. s. hydroxamates rather than catecholates regulated iron reducing ability. The extracellular Fe3+ reducing activity was greater for H. annosum s. s. isolates than for isolates of two other species, and reduction of ferric iron may promote oxidative burst in host cell and fungal colonization. Catecholate concentration in the presence of H. annosum s.s. contributing to host cell death, confirm iron involvement in infection success.







Opis fizyczny



  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
  • Department of Forest Pathology, Faculty of Forestry, Poznan University of Life Sciences, Poznan, Poland
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland


  • Arantes V., Baldocchi C., Milagres A.M.F. 2006. Degradation and decolorization of a biodegradable-resistant polymeric dye by chelator-mediated Fenton reactions. Chemosphere 63: 1764–1772.
  • Arantes V., Milagres A.M.F. 2007. The synergistic action of ligninolytic enzymes (MnP and Laccase) and Fe3+-reducing activity from white-rot fungi for degradation of Azure B. Enzyme and Microbial Technology 42: 17–22.
  • Arnow L.E. 1937. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixture. The Journal of Biological Chemistry 118: 531–537.
  • Asiegbu F.O., Johansson M., Woodward S., Hüttermann A. 1998. Biochemistry of the host-parasite interaction. In: Heterobasidion annosum: Biology, Ecology, Impact and Control. Woodward S., Stenlid J., Karjalainen R., Hüttermann A. (eds.). Wallingford, UK and New York, USA: CAB International, pp. 346–360.
  • Baker C.J., Mock N.M. 1994. An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell, Tissue and Organ Culture 39: 7–12.
  • Bertrand S., Larcher G., Landreau A., Richomme P., Duval O., Bouchara J.P. 2009. Hydroxamate siderophores of Scedosporium apiospermum Biometals 22: 1019–1029.
  • Boughammoura A., Franza T., Dellagi A., Roux C., Matzanke-Markstein B., Expert D. 2007. Ferritins, bacterial virulence and plant defence. Biometals 20: 347–353.
  • Dalman K., Himmelstrand K., Olson Å., Lind M., Brandström-Durling M., Stenlid J. 2013. A genome-wide association study identifies genomic regions for virulence in the non-model organism Heterobasidion annosum s.s. PloS One 8: e53525.
  • Dalman K., Olson Å., Stenlid J. 2010. Evolutionary history of the conifer root rot fungus Heterobasidion annosum sensu lato. Molecular Ecology 19: 4979–4993.
  • Daniel G., Asiegbu F., Johansson M. 1998. The saprotrophic wood-degrading abilities of Heterobasidion annosum intersterility groups P and S. Mycological Research 102: 991–997.
  • Dellagi A., Brisset M.N., Paulin J.P., Expert D. 1998. Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Molecular Plant-Microbe Interactions 11: 734–742.
  • Dutton M.V., Evans C.S., Atkey P.T., Wood D.A. 1993. Oxalate production by Basidiomycetes, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Applied Microbiology and Biotechnology 39: 5–10.
  • Dwivedi U.N., Singh P., Pandey V.P., Kumar A. 2011. Structure–function relationship among bacterial, fungal and plant laccases. Journal of Molecular Catalysis B: Enzymatic 68: 117–128.
  • Expert D., Franza T., Dellagi A. 2012. Iron in Plant–Pathogen Interactions. In: Molecular Aspects of Iron Metabolism in Pathogenic and Symbiotic Plant-Microbe Associations. Expert D, O’Brian MRO. (eds.). Springer, Netherlands, pp. 7–39.
  • Goodell B., Jellison J., Liu J., Daniel G., Paszczynski A., Fekete F., Krishnamurthy S., Jun L., Xu G. 1997. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. Journal of Biotechnology 53: 133–162.
  • Ingestad T. 1979. Mineral nutrient requirements of Pinus sylvestris and Picea abies seedlings. Physiologia Plantarum 45: 373–380.
  • Johansson M., Lundgren L., Asiegbu F.O. 1998. Differential phenol-induced laccase activity and total oxidative capacity of the S and P intersterility groups of the conifer root pathogen Heterobasidion annosum. Microbiological Research 153: 71–80.
  • Johansson S.M., Lundgren L.N., Asiegbu F.O. 2004. Initial reactions in sapwood of Norway spruce and Scots pine after wounding and infection by Heterobasidion parviporum and H. annosum. Forest Pathology 34: 197–210.
  • Karjalainen R. 1996. Genetic relatedness among strains of Heterobasidion annosum as detected by random amplified polymorphic DNA markers. Journal of Phytopathology 144: 399–404.
  • Kasuga T., Woods C., Woodward S., Mitchelson K. 1993. Heterobasidion annosum 5.8S ribosomal DNA and internal spacer transcribed sequence: rapid identification of European intersterility groups by ribosomal DNA restriction polymorphism. Current Genetics 24: 433–436.
  • Kim K.S., Min J.Y., Dickman M.B. 2008. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Molecular Plant-Microbe Interactions 21: 605–612.
  • Korhonen K., Stenlid J. 1998. Biology of Heterobasidion annosum. In: Heterobasidion annosum: Biology, Ecology, Impact and Control. Woodward S, Stenlid J, Karjalainen R, Hüttermann A. (eds.). Wallingford, UK and New York, USA: CAB International, pp. 43–70.
  • Krokene P., Nagy N.E., Solheim H. 2008. Methyl jasmonate and oxalic acid treatment of Norway spruce: anatomically based defense responses and increased resistance against fungal infection. Tree Physiology 28: 29–35.
  • Machuca A., Aoyama H., Durán N. 1999. Isolation and partial characterization of an extracellular low-molecular mass component with high phenoloxidase activity from Thermoascus aurantiacus. Biochemical and Biophysical Research Communications 256: 20–26.
  • McCaig B.C., Meagher R.B., Dean J.F.D. 2005. Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221: 619–636.
  • Milagres A.M.F., Arantes V., Medeiros C.L., Machuca A. 2002. Production of metal chelating compounds by white and brown-rot fungi and their comparative abilities for pulp bleaching. Enzyme and Microbial Technology 30: 562–565.
  • Mucha J., Guzicka M., Łakomy P., Zadworny M. 2012. Iron and reactive oxygen responses in Pinus sylvestris root cortical cells infected with different species of Heterobasidion annosum sensu lato. Planta 236: 975–988.
  • Mucha J., Guzicka M., Łakomy P., Zadworny M. 2013. Production of Metal-Chelating Compounds by Species of Heterobasidion annosum sensu lato. Journal of Phytopathology 161: 791–799.
  • Neilands J.B., Nakamura K. 1991. Detection, determination, isolation, characterization and regulation of microbial iron chelates. In: CRC handbook of microbial iron chelates. Winkelmann G. (ed.). CRC Press, Boca Raton, Florida, pp 1–14.
  • Olson Å., Aerts A., Asiegbu F., Belbahri L., Bouzid O., Broberg A., Canbäck B., Countinho P.M., Cullen D., Dalman K., Deflorio G., van Diepen L.T.A., Dunand C., Duplessis S., Durling M., Gonthier P., Grimwood J., Fossdal C.G., Hansson D., Henrissat B., Hietala A., Himmelstrand K., Hoffmeister D., Högberg N., James T.Y., Karlsson M., Kohler A., Kües U., Lee Y.H., Lin Y.C., Lind M., Lindquist E., Lombard V., Lucas S., Lundén K., Morin E., Murat C., Park J., Raffaello T., Rouzé P., Salamov A., Schmutz J., Solheim H., Ståhlberg J., Vélëz H., de Vries R.P., Wiebenga A., Woodward S., Yakovlev I., Garbelotto M., Martin F., Grigoriev I.V., Stenlid J. 2012 Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytologist 194: 1001–1013.
  • Palviainen M., Finér L., Kurka A.M., Mannerkoski H., Piirainen S., Starr M. 2004. Decomposition and nutrient release from logging residues after clear-cutting of mixed boreal forest. Plant and Soil 263: 53–67.
  • Snow G.A. 1954. Mycobactin, a growth factor for Mycobacterium johnei: II. Degradation and identification of fragments. Journal of the Chemical Society 2588–2596.
  • Stookey L.L. 1970. Ferrozine-a new spectrophotometric reagent for iron. Analytical Chemistry 42: 779–781.
  • Tanaka H., Hirano T., Enoki A. 1993. Extracellular substance from the white rot basidiomycete Irpex lacteus for and reduction of H2O2 during wood degradation. Mokuzai Gakkaishi 39: 493–499.
  • Tanaka H., Itakura S., Hirano T., Enoki A. 1996. An extracellular substance from the white-rot basidiomycete Phanerochaete chrysosporium for reducing molecular oxygen and ferric iron. Holzforschung 50: 541–548.
  • Van Kan J.A.L. 2006. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends in Plant Science 11: 247–253.
  • Werner A., Łakomy P., Idzikowska K., Zadworny M. 2005. Initial stages of host-pathogen interaction between Pinus sylvestris seedling roots and the P-, S- and F-intersterility group isolates of Heterobasidion annsoum. Dendrobiology 54: 57–63.
  • Williams B, Kabbage M., Kim H., Britt R., Dickman M.B. 2011. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. Plos Pathogens 7: e1002107.
  • Zadworny M., Smoliński D.J., Świdzinski M., Guzicka M., Łakomy P., Mucha J. 2012 Callose synthase in Pinus sylvestris response during infection by species of Heterobasidion annosum sensu lato with varied host preferences. Journal of Phytopathology 160: 745–751.
  • Zhang Z., Collinge D.B., Thordal-Christensen H. 1995. Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. The Plant Journal 8: 139–145.
  • Zhu X., Williamson P.R. 2004. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Research 5: 1–10.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.