PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 22 | 3 |

Tytuł artykułu

Biologicznie aktywne peptydy uwalniane z białek żywności

Treść / Zawartość

Warianty tytułu

EN
Biologically active peptides released from food proteins

Języki publikacji

PL

Abstrakty

PL
Białka żywności charakteryzują się wieloma właściwościami odżywczymi i biologicznymi. Biologicznie aktywne peptydy to fragmenty sekwencji aminokwasowych białek żywności, które stają się aktywne po uwolnieniu. Zwykle są one uwalniane podczas procesów trawienia, fermentacji (dzięki aktywności proteolitycznej mikroorganizmów) lub procesów enzymatycznych in vitro i wówczas mogą wpływać na zdrowie człowieka. Z białek żywności wyizolowano szereg peptydów bioaktywnych, w tym: inhibitory enzymu konwertującego angiotensynę, antyoksydacyjne, antymikrobiologiczne, antyamnezyjne, opioidowe, sensoryczne czy wiążące mikroelementy. Badane są także peptydy niekorzystnie oddziałujące na zdrowie człowieka, np. toksyczne dla osób chorych na celiakię. Obecnie kontynuowane są badania w celu wskazania nowych źródeł bioaktywnych peptydów, a także sposobów ich otrzymywania, biodostępności, aktywności biologicznej i mechanizmów działania. W artykule przedyskutowano sposoby otrzymywania bioaktywnych peptydów z białek żywności, wybrane rodzaje ich aktywności biologicznej oraz ich biodostępność.
EN
Food proteins are characterized by many nutritional and biological properties. The biologically active peptides are fragments of amino acid sequences of food proteins that become active upon release. Usually, they are released during the processes of gastrointestinal digestion and fermentation (through proteolytic activity of micro-organisms), or during the in vitro enzymatic processes and, then, they can affect human health. A number of bioactive peptides were isolated from food proteins including the following: angiotensin converting enzyme (ACE) inhibitors, antioxidants, antimicrobial peptides as well as antiamnestic, opioid, sensory, and micro-minerals binding peptides. Furthermore, those peptides are studied, which adversely affect human health, e.g. toxic to people with coeliac disease. Currently, research studies are carried on to identify new sources of bioactive peptides, to specify methods of producing them, and to determine their bioavailability, biological properties, and mechanisms of action. In the paper, there are discussed the methods of producing bioactive peptides from food proteins as are some selected types of their biological activity and their bioavailability.

Wydawca

-

Rocznik

Tom

22

Numer

3

Opis fizyczny

s.26-41,bibliogr.

Twórcy

autor
  • Katedra Biochemii Żywności, Wydział Nauki o Żywności, Uniwersytet Warmińsko-Mazurski w Olsztynie, pl.Cieszyński 1, 10-726 Olsztyn
autor
  • Katedra Biochemii Żywności, Wydział Nauki o Żywności, Uniwersytet Warmińsko-Mazurski w Olsztynie, pl.Cieszyński 1, 10-726 Olsztyn
  • Katedra Biochemii Żywności, Wydział Nauki o Żywności, Uniwersytet Warmińsko-Mazurski w Olsztynie, pl.Cieszyński 1, 10-726 Olsztyn
autor
  • Katedra Biochemii Żywności, Wydział Nauki o Żywności, Uniwersytet Warmińsko-Mazurski w Olsztynie, pl.Cieszyński 1, 10-726 Olsztyn
autor
  • Katedra Biochemii Żywności, Wydział Nauki o Żywności, Uniwersytet Warmińsko-Mazurski w Olsztynie, pl.Cieszyński 1, 10-726 Olsztyn

Bibliografia

  • research into the composition of animal source foods. Food Revs Int., 2013, 29, 321-351.
  • [1] Artym J., Zimecki M.: Milk-derived proteins and peptides in clinical trials. Postępy Hig. Med. Dośw., 2013, 67, 800-816.
  • [2] Battison A.L., Summerfield R., Patrzykat A.: Isolation and characterization of two antimicrobial peptides from haemocytes of the American lobster Homarus americanus. Fish Shellfish Immunol., 2008, 25, 181-187.
  • [3] Belyaeva Y.A., Dubynin V.A., Stovolosov I.S., Kamensky A.A.: Neurotropic activity of exorphins with different affinity to the opioid receptors of μ and δ-types. Neurochem. J., 2008, 2, 47-52.
  • [4] Bleiel J.: Functional foods from the perspective of the consumer: How to make it a success? Int. Dairy J., 2010, 20, 303-306.
  • [5] Broadbent J.R., Barnes M., Brennand C., Strickland M., Houck K., Johnson M.E., Steele J.L.: Contribution of Lactococcus lactis cell envelope proteinase specifcity to peptide accumulation and bitterness in reduced-fat Cheddar cheese. Appl. Environ. Microbiol., 2002, 68, 1778-1785.
  • [6] Byun H-G., Kim S-K.: Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan pollack skin. J. Biochem. Mol. Biol., 2002, 35, 239-243.
  • [7] Cavazos A., Gonzalez de Meíja E.: Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases. Compr. Rev. Food Sci. Food Saf., 2013, 12, 364-380.
  • [8] Chen Z.-Y., Peng C., Jiao R., Wong Y. M., Yang N., Huang Y.: Anti-hypertensive nutraceuticals and functional foods. J. Agric. Food. Chem., 2009, 57, 4485-4499.
  • [9] Choińska A., Łaba W., Rodziewicz A., Bogacka A.: Proteoliza keratyny piór kurzych z wykorzystaniem pozakomórkowych enzymów proteolitycznych szczepu Bacillus cereus B5E/SZ. Żywność, Nauka, Technologia, Jakość, 2011, 6 (79), 204-213.
  • [10] Comino I., Real A., Moreno M., Montes R., Cebolla Á., Sousa C.: Immunological determination of gliadin 33-mer equivalent peptides in beers as a specific and practical analytical method to assess safety for celiac patients. J. Sci. Food Agric., 2013, 93, 933-943.
  • [11] Darewicz M., Dziuba J., Minkiewicz P.: Computational characterisation and identification of peptides for in silico detection of potentially celiac-toxic proteins. Food Sci. Technol. Int., 2007, 13, 125-133.
  • [12] Darewicz M., Dziuba J., Minkiewicz P.: Celiac disease-background, molecular, bioinformatics and analytical aspects. Food Rev. Int., 2008, 24, 311-329.
  • [13] Darewicz M., Dziuba J.: Peptydy funkcjonalnie aktywne. W: Biologicznie aktywne peptydy i białka żywności. Red: J. Dziuba i Ł. Fornal. WNT, Warszawa 2009, ss. 71-109.
  • [14] Darewicz M., Dziuba B., Minkiewicz P., Dziuba J.: The preventive potential of milk and colostrums proteins and protein fragments. Food Rev. Int., 2011, 27, 357-388.
  • [15] Dąbrowska A., Szołtysik M., Babij K., Pokora M., Zambrowicz A., Chrzanowska J.: Application of Asianpumpkin (Cucurbita ficifolia) serine proteinase for production of biologically active peptides from casein. Acta Biochim. Polon., 2013, 60, 117-122.
  • [16] Dewar D., Pereira S.P., Ciclitira P.J.: The pathogenesis of celiac disease. Int. J. Biochem. Cell Biol., 2004, 36, 17-24.
  • [17] Dubynin V.A., Malinovskaya I.V., Belyaeva Y.A., Stovolosov I.S., Bespalova Z.D., Andreeva L.A., Kamenskii A.A., Myasoedov N.F.: Delayed effect of exorphins on learning of albino rat pups. Biol. Bull., 2008, 35, 43-49.
  • [18] Eckert E., Zambrowicz A., Pokora M., Dąbrowska A., Szołtysik M., Chrzanowska J., Trziszka T.: Application of microbial proteases to obtain egg yolk protein hydrolysates with antioxidant and antimicrobial activity. Żywność. Nauka. Technologia. Jakość, 2013, 1 (86), 105-118.
  • [19] Eckert E., Zambrowicz A., Pokora M., Polanowski A., Chrzanowska J., Szołtysik M., Dąbrowska A., Różański H., Trziszka T.: Biologically active peptides derived from egg proteins. World's Poultry Sci. J., 2013, 69, 375-386.
  • [20] Escudero A., Aristoy M.-C., Nishimura H., Arihara K., Toldrá F.: Antihypertensive effect and antioxidative activity of peptide fractions extracted from Spanish dry-cured ham. Meat. Sci., 2012 91, 306-311.
  • [21] Escudero E., Mora L., Fraser P.D., Aristoy M.-C., Arihara K., Toldrá F.: Purification and identification of antihypertensive peptides in Spanish dry-cured ham. J. Proteom., 2013, 78, 499-507.
  • [22] Fanciulli G., Dettori A., Demontis M.P., Anania V., Delitala G.: Serum prolactin levels after administration of the alimentary opioid peptide gluten exorphin B4 in male rats. Nutr. Neurosci., 2004, 7, 53-55.
  • [23] Foltz M., Cerstiaens A., van Meensel A., Mols R., van der Pijl P.C., Duchateau G.S.M.J.E., Augustijns P.: The angiotensin converting enzyme inhibitory tripeptides Ile-Pro-Pro and Val-Pro-Pro show increasing permeabilities with increasing physiological relevance of absorption models. Peptides, 2008, 29, 1312-1320.
  • [24] Gómez-Guillén M.C., Giménez B., López-Caballero M.E., Montero M.P.: Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll., 2011, 25, 1813-1827.
  • [25] Hancock R.E., Sahl H.-G.: Antimicrobial and host-defence peptides as new anti-infective therapeutic strategies. Nature Biotechnol., 2006, 24, 1551-1557.
  • [26] Harnedy P.A., FitzGerald R.J.: Bioactive peptides from marine processing waste and shellfish: A review. J. Funct. Foods, 2012, 4, 6-24.
  • [27] Hayes M., Barrett E., Ross R.P., Fitzgerald G.F., Hill C., Stanton C.: Evaluation of an antimicrobial ingredient prepared from a Lactobacillus acidophilus casein fermentate against Enterobacter sakazakii. J. Food Protect., 2009, 72, 340-346.
  • [28] Hernández-Ledesma B., Dávalos A., Bartolomé B., Amigo L.: Preparation of antioxidant enzymatic hydrolysates from alpha-lactalbumin and beta-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J. Agric. Food Chem., 2005, 53, 588-593.
  • [29] Hernández-Ledesma B., Quiros A., Amigo L., Recio I.: Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. Int. Dairy J., 2007, 17, 42-49.
  • [30] Hirata H., Sonoda S., Agui S., Yoshida M., Ohinata K., Yoshikawa M.: Rubiscolin-6, a δ opioid peptide derived from spinach Rubisco, has anxiolytic effect via activating σ₁ and dopamine D₁ receptors. Peptides, 2007, 28, 1998-2003.
  • [31] Huang G.-R., Ren Z.-Y., Jiang J.-X., Chen W.-W.: Purification of a hepta-peptide with iron binding activity from shrimp processing by-products hydrolysates. Adv. J. Food Sci. Technol., 2012, 4, 207-212.
  • [32] Iwaniak A., Minkiewicz P., Darewicz M.: Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Compr. Revs Food Sci. Food Saf., 2014, 13, 114-134.
  • [33] Iwaniak A., Minkiewicz P.: Proteins as the source of physiologically and functionally active peptides. Acta Sci. Pol., Technol. Aliment., 2007, 3 (6), 5-15.
  • [34] Iwaniak A., Minkiewicz P.: Biologically active peptides derived from proteins – a review. Pol. J. Food Nutr. Sci., 2008, 58, 289-294.
  • [35] Jakubczyk A., Baraniak B.: Activities and sequences of the angiotensin I-converting enzyme (ACE) inhibitory peptides obtained from the digested lentil (Lens culinaris) globulins. Int. J. Food Sci. Technol., 2013, 48, 2363-2369.
  • [36] Jakubczyk A., Karaś M., Baraniak B., Pietrzak M.: The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Food Chem., 2013, 141, 3774-80.
  • [37] Jäkälä P., Vapaatalo H.: Antihypertensive peptides from milk proteins. Pharmaceuticals, 2010, 3, 251-272.
  • [38] Jinsmaa Y., Yoshikawa M.: Enzymatic release of neocasomorphin and β-casomorphin from bovine β-casein. Peptides, 1999, 20, 957-962.
  • [39] Kamei K., Takano R., Miyasaka A., Imoto T., Hara S.: Amino acid sequence of sweet-taste-suppressing peptide (gurmarin) from the leaves of Gymnema sylvestre. J. Biochem. 1992, 1 (111), 109-112.
  • [40] Karaś M., Jakubczyk A., Baraniak B.: Antiradical and antihypertensive activity of peptides obtained from proteins pea sprouts (Pisum sativum) by enzymatic hydrolysis. Ann. Univ. M. Curie-Skłodowska Lublin – Polonia, 2010, 6 (23),115-121.
  • [41] Kawaguchi K., Nakamura T., Kamiye J., Takahashi T., Yamamoto N.: Accumulation of ACE inhibitory tripeptides, Val-Pro-Pro and Ile-Pro-Pro, in vascular endothelial cells. Biosci. Biotechnol. Biochem., 2012, 76, 1792-1795.
  • [42] Khora S.S.: Marine fish-derived bioactive peptides and proteins for human therapeutics. Int. J. Pharmacy Pharmaceut. Sci., 2013, 5, 31-37.
  • [43] Kies A.K., van der Pijl P.C.: Improved peptide availability. Patent UE 2010, 26994-WO-PTC.
  • [44] Kilara A., Panyam D.: Peptides from milk proteins and their properties. Crit. Rev. Food Sci. Nutr., 2003, 43, 607-633.
  • [45] Kim S.B., Lim J.W.: Calcium-binding peptides derived from tryptichydrolysates of cheese whey protein. Asian-Australasian J. Anim. Sci., 2004, 17,1459-1464.
  • [46] Klompong V., Benjakul S., Kantachote D., Shahidi F.: Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem., 2007, 102, 1317-1327.
  • [47] Kostyra E., Sienkiewicz-Szłapka E., Jarmołowska B., Krawczuk S., Kostyra H.: Opioid peptides derived from milk proteins. Pol. J. Food Nutr. Sci., 2004, 13, 25-35.
  • [48] Korhonen H., Pihlanto A.: Bioactive peptides: Production and functionality. Int. Dairy J., 2006,16, 945-960.
  • [49] Korhonen H.: Bioactive milk proteins and peptides: from science to functional applications. Aust. J. Dairy Technol., 2009, 64, 16-25.
  • [50] Kovacs-Nolan J., Phillips M., Mine Y.: Advances in the value of eggs and egg components for human health. J. Agric. Food Chem., 2005, 53, 8421-8431.
  • [51] Kurosawa M.T., Nakamura Y., Yamamoto N., Yamada K., Iketani T.: Effects of Val-Pro-Pro and Ile-Pro-Pro on nondipper patients: a preliminary study. J. Med. Food, 2011, 14, 538-542.
  • [52] Lahov E., Regelson W.: Antibacterial and immunostimulating casein-derived substances from milk, casecidin, isracidin peptides. Food Chem. Toxicol., 1996, 34, 131-145.
  • [53] Lange E.: Produkty owsiane jako żywność funkcjonalna. Żywność. Nauka. Technologia. Jakość, 2010, 3 (70), 7-24.
  • [54] Lis J., Orczyk-Pawiłowicz M., Kątnik-Prastowska I.: Białka mleka ludzkiego zaangażowane w procesy immunologiczne. Postępy Hig. Med. Dośw., 2013, 67, 529-547.
  • [55] Lone A.M., Nolte W.M., Tinoco A.D., Saghatelian A.: Peptidomics of the prolyl peptidases. The AAPS J., 2010, 12, 483-491.
  • [56] López-Expósito I., Amigo L., Recio I.: A mini-review on health and nutritional aspects of cheese with a focus on bioactive peptides. Dairy Sci. Technol., 2012, 92, 419-438.
  • [57] López-Expósito I., Recio I.: Antibacterial activity of peptides and folding variants from milk proteins. Int. Dairy J., 2006, 16, 1294-1305.
  • [58] López-Fandiño R., Recio I., Ramos M.: Egg-protein-derived peptides with antihypertensive activity. In: Bioactive egg compounds. Eds. Huopalahti R., López-Fandiño R., Anton M. i Schade R. Springer-Verlag, Berlin 2010, Part III, Subpart IIIa, pp. 199-211.
  • [59] Liu F.-R., Wang L., Wang R., Chen Z.-Z.: Calcium-binding capacity of wheat germ protein hydrolysate and characterization of peptide–calcium complex. J. Agric. Food Chem., 2013, 61, 7537-7544.
  • [60] Ludvigsson J.F., Leffler D.A., Bai J.C., Biagi F., Fasano A., Green P.H.R., Hadjivassiliou M., Kaukinen K., Kelly C.P., Leonard J.N., Aslaksen Lundin K.E., Murray J.A., Sanders D.S., Walker M.M., Zingone F., Ciacci C.: The Oslo definitions for coeliac disease and related terms. Gut, 2013, 62, 43-52.
  • [61] Marczak E.D., Usui H., Fujita H., Yang Y., Yokoo M., Lipkowski A.W., Yoshikawa M.: New antihypertensive peptides isolated from rapeseed. Peptides, 2003, 24, 791-798.
  • [62] Matsui T., Kawasaki T.: Antihypertensive effects of bioactive peptides derived from food proteins. Development of antihypertensive food with bioactive sardine muscle peptide (Val-Tyr). J. Japanese Soc. Nutr. Food Sci., 2000, 53, 2, 77-85.
  • [63] Mellander O.: The physiological importance of the casein phosphopeptide calcium salts. II. Peroral calcium dosage of infants. Acta Soc. Med. Ups., 1950, 55, 247-255.
  • [64] Miguel M., Aleixandre A.: Antihypertensive peptides derived from egg proteins. J. Nutr., 2006, 136, 1457-1460.
  • [65] Miguel M., López-Fandiño R., Ramos M., Aleixandre A.: Short-term effect of egg-white hydrolysate products on the arterial blood pressure of hypertensive rats. Brit. J. Nutr., 2005, 94, 731-737.
  • [66] Minervini F., Algaron F., Rizello G.C., Fox P.F., Monnet V., Gobbetti M.: Angiotensin Iconverting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolysed caseins of milk from six species. Appl. Environ. Microbiol., 2003, 69, 5297- 5305.
  • [67] Minkiewicz P., Dziuba J., Darewicz M., Iwaniak A., Dziuba M., Nałęcz D.: Food peptidomics. Food Technol. Biotechnol., 2008, 46, 1-10.
  • [68] Minkiewicz P., Dziuba J., Iwaniak A., Dziuba M., Darewicz M.: BIOPEP database and other programs for processing bioactive peptide sequences. J. AOAC Int., 2008, 91, 965-981.
  • [69] Minkiewicz P., Miciński J., Darewicz M., Bucholska J.: Biological and chemical databases for research into the composition of animal source foods. Food Revs Int., 2013, 29, 321-351.
  • [70] Mirski T., Gryko R., Bartoszcze M., Bielawska-Drózd A., Tyszkiewicz W.: Antimicrobial peptides: new possibilities to combat infections in humans and animals. Med. Weter., 2011, 67, 517-521.
  • [71] Möller N.P., Scholz-Ahrens K.E., Roos N., Schrezenmeir J.: Bioactive peptides and proteins from foods: indications for health effects. Eur. J. Nutr., 2008, 47, 171-182.
  • [72] Nakashima Y., Arihara K., Sasaki A., Mio H., Ishikawa S., Itoh M.: Antihypertensive activities of peptides derived from porcine skeletal muscle myosin in spontaneously hypertensive rats. J. Food Sci., 2002, 67, 434-437.
  • [73] Nongonierma A.B., FitzGerald R.J.: Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides. J. Funct. Foods, 2013, 5, 1909-1917.
  • [74] Norris R., FitzGerald R.J.: Antihypertensive peptides from food proteins. In: Bioactive Food Peptides in Health and Disease. Eds.: Hernández-Ledesma B., Hsieh C.-C., InTech, 2013, pp. 45-72. Dostęp w Internecie [05.04.14.]: http://www.intechopen.com/books/bioactive-food-peptides-in-health-and-disease/antihypertensive-peptides-from-food-proteins.
  • [75] Nydahl K.S., Pierson J., Nyberg F., Caprioli R.M., Andrén P.E.: In vivo processing of LVV-hemorphin-7 in rat brain and blood utilizing microdialysis combined with electrospray mass spectrometry. Rapid Commun. Mass Spectrom., 2003, 17, 838-844.
  • [76] Ohinata K., Agui S., Yoshikawa M.: Soymorphins, novel opioid peptides derived from soy β- conglycinin β-subunit, have anxiolytic activities. Biosci. Biotechnol. Biochem., 2007, 71, 2618- 2621.
  • [77] Ortiz-Sánchez J.P., Cabrera-Chávez F., Calderón de la Barca A.M.: Maize prolamins could induce a gluten-like cellular immune response in some celiac disease patients. Nutrients, 2013, 5, 4174-4183.
  • [78] Pedrosa M., Pascual C.Y., Larco J.I., Esteban M.M.: Palatability of hydrolysates and other substitution formulas for cow’s milk-allergic children: a comparative study of taste, smell, and texture evaluated by healthy volunteers. J. Investig. Allergol. Clin. Immunol., 2006, 16, 351-356.
  • [79] Phelan M., Aherne A., FitzGerald R.J., O’Brien N.M.: Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J., 2009, 19, 643- 654.
  • [80] Pellegrini A.: Antimicrobial peptides from food proteins. Curr. Pharm. Des., 2003, 9, 1225-1238.
  • [81] Pihlanto A., Mäkinen S.: Antihypertensive properties of plant protein derived peptides. In: Bioactive Food Peptides in Health and Disease. Eds. Hernández-Ledesma B., Hsieh C.C. InTech, 2013, pp. 144-182. Dostęp w Internecie [05.04.14.]: http://www.intechopen.com/books/bioactive-food-peptides-in-health-and-disease/antihypertensive-properties-of-plant-protein-derived-peptides.
  • [82] Pokora M., Zambrowicz A., Dąbrowska A., Eckert E., Setner B., Szołtysik M., Szewczuk Z., Zabłocka A., Polanowski A., Trziszka T., Chrzanowska J.: Anattractive way of egg white protein by-product use for producing of novel anti-hypertensive peptides. Food Chem., 2014, 151, 500- 505.
  • [83] Praticò D.: Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol. Sci., 2008, 29, 609-615.
  • [84] Reichelt K.L., Knivsberg A. M.: Can the pathophysiology of autism be explained by the nature of the discovered urine peptides? Nutr. Neurosci., 2003, 6, 19-28.
  • [85] Rutherfurd-Markwick K.J., Moughan P.J.: Bioactive peptides derived from food. J. AOAC Int., 2005, 88, 955-966.
  • [86] Ryan J.T., Ross R.P., Bolton D., Fitzgerald G.F., Stanton C.: Bioactive peptides from muscle sources: meat and fish. Nutrients, 2011, 3, 765-791.
  • [87] Saiga A., Tanabe S., Nishimura T.: Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem., 2003, 51, 3661-3667.
  • [88] Sarmadi B.H., Ismail A.: Antioxidative peptides from food proteins: a review. Peptides, 2010, 31, 1949-1956.
  • [89] Schindler A., Dunkel A., Stähler F., Backes M., Ley J., Meyerhof W., Hofmann T.: Discovery of salt taste enhancing arginyl dipeptides in protein digests and fermented fish sauces by means of a sensomics approach. J. Agric. Food Chem., 2011, 59, 12578-12588.
  • [90] Segura-Campos M., Chel-Guerrero L., Betancur-Ancona D., Hernandez-Escalante V.M.: Bioavailability of bioactive peptides. Food Rev. Int., 2011, 27, 213-226.
  • [91] Severance E.G., Alaedini A., Yang S., Halling M., Gressitt K.L., Stallings C.R., Origoni A.E., Vaughan C., Khushalani S., Leweke F.M., Dickerson F.B., Yolken R.H.: Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophrenia Res., 2012, 138, 48-53.
  • [92] Shahidi F., Zhong Y.: Bioactive peptides. J. AOAC Int., 2008, 91, 914-931.
  • [93] Senevirathne M., Kim S.-K.: Development of bioactive peptides from fish proteins and their health promoting ability. Adv. Food Nutr. Res., 2012, 65, 235-248.
  • [94] Shaji J., Patole V.: Protein and peptide drug delivery: oral approaches. Indian J. Pharm. Sci., 2008, 70, 269-277.
  • [95] Shan L., Molberg Ø., Parrot I., Hausch F., Filiz F., Gray G.M., Sollid L.M., Khosla C.: Structural basis for gluten intolerance in celiac sprue. Science, 2002, 297, 2275-2279.
  • [96] Sienkiewicz-Szłapka E., Jarmołowska B., Krawczuk S., Kostyra E., Kostyra H., Bielikowicz K.: Transport of bovine milk-derived opioid peptides across a Caco-2 monolayer. Int. Dairy J., 2009, 19, 252-257.
  • [97] Silva S.V., Malcata X.: Caseins as source of bioactive peptides. Int. Dairy J., 2005, 15, 1-15.
  • [98] Sokołowska A., Bednarz R., Pacewicz M., Georgiades J., Wilusz T., Polanowski A.: Colostrum from different mammalian species – A rich source of colostrinin. Int. Dairy J., 2008, 18, 204-209.
  • [99] Szołtysik M., Niedbalska J., Dąbrowska A., Kupczyński R., Zambrowicz A., Pokora M., Babij K., Chrzanowska J.: Zastosowanie enzymatycznej hydrolizy kazeiny do otrzymywania peptydów o aktywności przeciwutleniającej. Przem. Chem., 2012, 91, 1014-1019.
  • [100] Temussi P.A.: The good taste of peptides. J. Pept. Sci., 2012, 18, 73-82.
  • [101] Thomä-Wörringer C., Sørensen J., López-Fandiño R.: Health effects and technological features of caseinomacropeptide. Int. Dairy J., 2006, 16, 1324-1333.
  • [102] Tomita M., Wakabayashi H., Yamauchi K., Teraguchi S., Hayasawa H.: Bovine lactoferrin and lactoferricin derived from milk: Production and applications. Biochem. Cell. Biol., 2002, 80, 109-112.
  • [103] Torres-Fuentes C., Alaiz M., Vioque J., Iron-chelating activity of chickpea protein hydrolysate peptides. Food Chem., 2012, 134, 1585-1588.
  • [104] Ueta E., Tanida T., Osaki T.: A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell and activates neutrophils. J. Pept. Res., 2001, 57, 240-249.
  • [105] Van der Kraan M.I., Groenink J., Nazmi K., Veerman E.C., Bolscher J.G., NieuwAmerongen A.V. Lactoferrampin – novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides, 2004, 25, 177-183.
  • [106] Vojdani A., Tarash I.: Cross-reaction between gliadin and different food and tissue antigens. Food Nutr. Sci., 2013, 4, 20-32.
  • [107] Wilson J., Hayes M., Carney B.: Angiotensin-I-converting enzyme and prolyl endopeptidase inhibitory peptides from natural sources with a focus on marine processing by products. Food Chem., 2011, 129, 235-244.
  • [108] Yanai T., Suzuki Y., Sato M.: Prolylendopeptidase inhibitory peptides in wine. Biosci. Biotechnol. Biochem., 2003, 67, 380-382.
  • [109] Yoshikawa M., Takahashi M., Yang S.: Delta opioid peptides derived from plant proteins. Curr. Pharmaceut. Design., 2003, 9, 1325-1330.
  • [110] Zambrowicz A., Timmer M., Polanowski A., Lubec G., Trziszka T.: Manufacturing of peptides exhibiting biological activity. Amino Acids, 2013, 44, 315-320.
  • [111] Zhang J.H., Tatsumi E., Ding C.H., Li L.T.: Angiotensin I-converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product. Food Chem., 2006, 98, 551-557.
  • [112] Zhao Q., Garreau I., Sannier F., Piot J.M.: Opioid peptides derived from hemoglobin: hemorphins. Biopolymers, 1997, 43, 75-98.
  • [113] Zucht H.D., Raida M., Adermann K.J., Forssman W.G., Casocidin I.: A casein-αs₂ derived peptide exhibits antibacterial activity. FEBS Lett., 1995, 372, 185-188.

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8eec5de5-c2e1-4437-841a-6d597e29a27b