PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 71 | 05 |

Tytuł artykułu

Kidney proteomic profiling of African catfish

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The purpose of this study was to create a two-dimensional (2-D) profile of kidney proteins characteristic of African catfish (Clarias gariepinus). We prepared proteins from kidney tissues of healthy 8-month-old African catfish. Samples were subjected to separation using high resolution two-dimensional electrophoresis (2-DE) and stained with colloidal Coomassie Brilliant Blue G-250. Among the 96 protein spots detected on each 2-DE gel, 9 different proteins were identified by means of a matrix-assisted laser desorption/ionization (MALDI) time-of- -flight (TOF) mass spectrometer. These proteins belong to the following groups: structural (actin and tubulin), involved in fat transport (fatty-acid binding protein), involved in cell cycle regulation (ubiquitin-protein ligase), responsible for cell metabolism (ATP synthase, hypoxanthine-guanine phosphoribosyltransferase, enolase) and molecular chaperone (heat shock protein 70 kDa). The presented in the current study two-dimensional map of kidney proteins may provide a basis for further refinements in the proteomic analysis of fish, including African catfish. The final result of comprehensive proteomic analysis may be a better understanding of kidney physiology and pathology, as well as identification of health and disease-related biomarkers.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

71

Numer

05

Opis fizyczny

p.286-291,fig.,ref.

Twórcy

autor
  • Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Breeding, West Pomeranian University of Technology, Doktora Judyma 6, 71-466 Szczecin, Poland
autor
  • Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Breeding, West Pomeranian University of Technology, Doktora Judyma 6, 71-466 Szczecin, Poland
  • Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Breeding, West Pomeranian University of Technology, Doktora Judyma 6, 71-466 Szczecin, Poland
  • Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Breeding, West Pomeranian University of Technology, Doktora Judyma 6, 71-466 Szczecin, Poland
autor
  • Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Breeding, West Pomeranian University of Technology, Doktora Judyma 6, 71-466 Szczecin, Poland
  • Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Breeding, West Pomeranian University of Technology, Doktora Judyma 6, 71-466 Szczecin, Poland

Bibliografia

  • 1. Arthur J. M., Thongboonkerd V., Scherzer J. A., Cai J., Pierce W. M., Klein J. B.: Differential expression of proteins in renal cortex and medulla: A proteomicapproach. Kidney Int. 2002, 62, 1314-1321.
  • 2. Booth N. J., Bilodeau-Bourgeois A. L.: Proteomic analysis of head kidney tissue from high and low susceptibility families of channel catfish followingchallenge with Edwardsiella ictaluri. Fish Shellfish Immunol. 2009, 26, 193--196.
  • 3. Burger A., Ludewig M. H., Boshoff A.: Investigating the Chaperone Properties of a Novel Heat Shock Protein, Hsp70.c, from Trypanosoma brucei. J. ParasitolRes. 2014, 2014, 172582.
  • 4. Burns R. G.: Alpha-, beta-, and gamma-tubulins: sequence comparisons and structural constraints. Cell Motil. Cytoskeleton 1991, 20, 181-189.
  • 5. Cardozo T., Pagano M.: The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 2004, 5, 739-751.
  • 6. Chang G. C., Liu K. J., Hsieh C. L., Hu T. S., Charoenfuprasert S., Liu H. K., Luh K. T., Hsu L. H., Wu C. W., Ting C. C., Chen C. Y., Chen K. C., Yang T. Y.,Chou T. Y., Wang W. H., Whang-Peng J., Shih N. Y.: Identification of alpha--enolase as an autoantigen in lung cancer: its overexpression is associated withclinical outcomes. Clin. Cancer Res. 2006, 12, 5746-5754.
  • 7. Forné I., Abián J., Cerdà J.: Fish proteome analysis: Model organisms and non-sequenced species. Proteomics 2010, 10, 858-872.
  • 8. Groh K. J., Nesatyy J. V., Segner H., Eggen R. L., Suter M. J.: Global proteomics analysis of testis and ovary in adult zebrafish (Danio rerio). Fish Physiol.Biochem. 2011, 37, 619-647.
  • 9. Haimoto H., Takashi M., Koshikawa T., Asai J., Kato K.: Enolase isozymes in renal tubules and renal cell carcinoma. Am. J. Pathol. 1986, 124, 488-495.
  • 10. Janik A., Pieszka M.: Proteomika – stan badań u zwierząt gospodarskich. Wiad. Zoot. 2005, 43, 3-8.
  • 11. Jinnah H. A., Hess E. J., Wilson M. C., Gage F. H., Friedmann T.: Localization of hypoxanthine-guanine phosphoribosyltransferase mRNA in the mouse brainby in situ hybridization. Mol. Cell Neurosci. 1992, 3, 64-78.
  • 12. Jonckheere A. I., Smeitink J., Rodenburg R.: Mitochondrial ATP synthase: architecture, function and pathology. J. Inherit. Metab. Dis. 2012, 35, 211-225.
  • 13. Kaczocha M., Rebecchi M. J., Ralph B. P., Teng Y. H., Berger W. T., Galbavy W., Elmes M. W., Glaser S. T., Wang L., Rizzo R. C., Deutsch D. G., Ojima I.:Inhibition of Fatty Acid binding proteins elevates brain anandamide levelsand produces analgesia. PLoS One 2014, 9, e94200.
  • 14. Liu R. Z., Li X., Godbout R.: A novel fatty acid-binding protein (FABP) gene resulting from tandem gene duplication in mammals: transcription in rat retinaand testis. Genomics. 2008, 92, 436-445.
  • 15. Lucitt M. B., Price T. S., Pizarro A., Wu W., Yocum A. K., Seiler C., Pack M. A., Blair I. A., Fitzgerald G. A., Grosser T.: Analysis of the zebrafish proteomeduring embryonic development. Mol. Cell Proteomics 2008, 7, 981-994.
  • 16. Mayer M. P., Bukau B.: Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol. Life Sci. 2005, 62, 670-684.
  • 17. Merlet J., Pintard L.: Role of the CRL2(LRR-1) E3 ubiquitin-ligase in the development of the germline in C. elegans. Worm. 2013, 2, e25716.
  • 18. Nakamura J., Fujikawa M., Yoshida M.: IF1, a natural inhibitor of mitochondrial ATP synthase, is not essential for the normal growth and breeding ofmice. Biosci. Rep. 2013, 33, pii: e00067.
  • 19. Pink M., Verma N., Rettenmeier A. W., Schmitz-Spanke S.: CBB staining protocol with higher sensitivity and mass spectrometric compatibility.Electrophoresis 2010, 31, 593-598.
  • 20. Piñeiro C., Barros-Velázquez J., Figueras J. A., Gallardo J. M.: Proteomics as a Tool for the Investigation of Seafood and Other Marine Products. J. ProteomeRes. 2003, 2, 127-135.
  • 21. Piñeiro C., Cañas B., Carrera M.: The role of proteomics in the study of the influence of climate change on seafood products. Food Res. Int. 2010, 43, 1791-1802.
  • 22. Robinson P. A., Ardley H. C.: Ubiquitin-protein ligases. J. Cell Sci. 2004, 117, 5191-5194.
  • 23. Rohde M., Daugaard M., Jensen M. H., Helin K., Nylandsted J., Jäättelä M.: Members of the heat-shock protein 70 family promote cancer cell growth bydistinct mechanisms. Genes Dev. 2005, 19, 570-582.
  • 24. Sarker M. Z., Selamat J., Habib A. S., Ferdosh S., Akanda M. J., Jaffri J. M.: Optimization of Supercritical CO(2) Extraction of Fish Oil from Viscera ofAfrican Catfish (Clarias gariepinus). Int. J. Mol. Sci. 2012, 13, 11312-11322.
  • 25. Saxena S., Singh S. K., Lakshmi M. G., Meghah V., Sundaram C. S., Swamy C. V., Idris M. M.: Proteome profile of zebrafish kidney. J. Proteomics 2011,74, 2937-2947.
  • 26. Song Y., Luo Q., Long H., Hu Z., Que T., Zhang X., Li Z., Wang G., Yi L., Liu Z., Fang W., Qi S.: Alpha-enolase as a potential cancer prognostic markerpromotes cell growth, migration, and invasion in glioma. Mol. Cancer. 2014,13, 65.
  • 27. Tu S. H., Chang C. C., Chen C. S., Tam K. W., Wang Y. J., Lee C. H., Lin H. W., Cheng T. C., Huang C. S., Chu J. S., Shih N. Y., Chen L. C., Leu S. J., HoY. S., Wu C. H.: Increased expression of enolase alpha in human breast cancerconfers tamoxifen resistance in human breast cancer cells. Breast Cancer Res.Treat. 2010, 121, 539-553.
  • 28. Villasante A., Wang D., Dobner P., Dolph P., Lewis S. A., Cowan N. J.: Six mouse alpha-tubulin mRNAs encode five distinct isotypes: testis-specificexpression of two sister genes. Mol. Cell Biol. 1986, 6, 2409-2419.
  • 29. Wilson J. M., Tarr G. E., Mahoney W. C., Kelley W. N.: Human hypoxanthine- guanine phosphoribosyltransferase. Complete amino acid sequence of theerythrocyte enzyme. J. Biol. Chem. 1982, 257, 10978-10985.
  • 30. Xu G., Su H., Carter C. B., Fröhlich O., Chen G.: Depolymerization of cortical actin inhibits UT-A1 urea transporter endocytosis but promotes forskolin--stimulated membrane trafficking. Am. J. Physiol. Cell Physiol. 2012, 302,C1012-C1018.
  • 31. Zhou X., Ding Y., Wang Y.: Proteomics: present and future in fish, shellfish and seafood. Rev. Aquacult. 2012, 4, 11-20.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8ea460ae-336b-44e0-9456-cefd5ace8b4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.