PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 5 |
Tytuł artykułu

Research on the geological disaster forecast and early warning model based on the optimal combination weighing law and extension

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geological disaster causes loss of lives and damage to man-made and natural stuctures. In this paper, a coupling method with optimal combination weighing law and extension model was established. Based on dynamic impact factors such as forest coverage, annual average rainfall, topography and gemorphogy, geologic structure, and type of rock and soil, the amount of disaster points and human engineering activities, we chose Jilin Province in China as the case study area. We made a spatial analysis and drew a geological disaster susceptibility zonation map using GIS technology. In addition, we established a geological disaster forecast and early-warning model. The results are as follows: 1) the couple method is an innovative and significant exploration, 2) geological disaster susceptibility zones in Jilin Province were divided into four areas, and 3) the forecasting and early warning model has a relatively high accuracy of forecast and early warning.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
26
Numer
5
Opis fizyczny
p.2385-2395,fig.,ref.
Twórcy
autor
  • Nature Disaster Research Institute, School of Environment, Northeast Normal University, Changchun 130117, People’s Republic of China
  • Jilin Institute of Geological Environmental Monitoring, Changchun 130021, People’s Republic of China
autor
  • Nature Disaster Research Institute, School of Environment, Northeast Normal University, Changchun 130117, People’s Republic of China
autor
  • Nature Disaster Research Institute, School of Environment, Northeast Normal University, Changchun 130117, People’s Republic of China
autor
  • Nature Disaster Research Institute, School of Environment, Northeast Normal University, Changchun 130117, People’s Republic of China
autor
  • Nature Disaster Research Institute, School of Environment, Northeast Normal University, Changchun 130117, People’s Republic of China
autor
  • Nature Disaster Research Institute, School of Environment, Northeast Normal University, Changchun 130117, People’s Republic of China
Bibliografia
  • 1. CHEN T., NIU R., JIA X. A comparison of information value and logistic regression models in landslide susceptibility mapping by using GIS. Environmental Earth Sciences. 75 (10), 867, 2016.
  • 2. DAI F. C., LEE C. F., NGAI Y. Y. Landslide risk assessment and management: an overview. Engineering Geology. 64 (1), 65, 2002.
  • 3. QIAN X., CHEN J., XIANG L., ZHANG W., NIU C. A novel hybrid KPCA and SVM with PSO model for identifying debris flow hazard degree: a case study in Southwest China. Environmental Earth Sciences. 75 (991), 2016.
  • 4. KOMENDANTOVA N., MRZYGLOCKI R., MIGNAN A., KHAZAI B., WENZEL F., PATT A., FLEMING K. Multi-hazard and multi-risk decision-support tools as a part of participatory risk governance: Feedback from civil protection stakeholders. International Journal of Disaster Risk Reduction. 8, 50, 2014.
  • 5. HUANG C.C, SHECHIEH Y. Experimental investigation of rainfall criteria for shallow slope failures. Geomorphology. 120 (3), 326, 2010.
  • 6. GAO W.Y., MING L.I., JI-WEN D.U. New Thought of Meteorological Forecasting and Warning Models of Geological Disasters in Loess Plateau of North Shaanxi. Meteorological and Environmental Research. 1 (8), 12, 2010.
  • 7. YOUSSEF A.M., MAERZ N.H. Overview of some geological hazards in the Saudi Arabia. Environmental Earth Sciences. 70 (7), 3115, 2013.
  • 8. CHENG Y., HUO A. Geo-hazard Risk Evaluation in Huangling County Shaanxi Province. Energy Procedia. 13, 10304-10309, 2011.
  • 9. YOSHIMATSU H., ABE S. A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides. 3 (2), 149, 2006.
  • 10. CHENG Y., HUO A., ZHANG J., LU Y. Early warning of meteorological geohazard in the Loess Plateau: a study in Huangling County of Shaanxi Province in China. Environmental Earth Sciences. 73 (3), 1057, 2015.
  • 11. PENG L., NIU R., HUANG B., WU X., ZHAO Y., YE R. Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology. 204 (1), 287, 2014.
  • 12. STEGER S., BRENNING A., BELL R., GLADE T. The propagation of inventory-based positional errors into statistical landslide susceptibility models. Natural Hazards and Earth System Sciences. 16 (12), 2729, 2016.
  • 13. CHEN L., VAN WESTEN C.J., HUSSIN H., CIUREAN R.L., TURKINGTON T., CHAVARRO-RINCON D., SHRESTHA D. P. Integrating expert opinion with modelling for quantitative multi-hazard risk assessment in the Eastern Italian Alps. Geomorphology. 273, 150, 2016.
  • 14. XU D., LIU. The Relationship Between the Landslide and Debris Flows and the Precipitation in Yunnan Province Under Conditions of Different Geology and Geomorphology. Meteorological Monthly. 33 (9), 33, 2007.
  • 15. FALL M., AZZAM R., NOUBACTEP C. A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Engineering Geology. 82 (4), 241, 2006.
  • 16. ANBALAGAN R., KUMAR R, LAKSHMANAN K, PARIDA S, NEETHU S. Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenvironmental Disasters. 2, 6, 2015.
  • 17. CHANG T. Risk degree of debris flow applying neural networks. Natural Hazards. 42 (1), 209, 2007.
  • 18. YANG Z.J., QIAO J.P., HUANG D., TIAN H.L., JIANG Y.J., SHI L. A Multi-Scaled Early Warning Method for Rainfall-Induced Mountain Hazards. Springer International Publishing, 619, 2014.
  • 19. OZDEMIR A., ALTURAL T. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences. 64, 180, 2013.
  • 20. PAPADOPOULOU-VRYNIOTI K., BATHRELLOS G.D., SKILODIMOU H.D., KAVIRIS G., MAKROPOULOS K. Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area. Engineering Geology. 158 (8), 77, 2013.
  • 21. POURGHASEMI H.R., PRADHAN B., GOKCEOGLU C., MOHAMMADI M., MORADI H.R. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian Journal of Geosciences. 6 (7), 2351, 2013.
  • 22. MORADI M., BAZYAR M.H., MOHAMMADI Z. GIS-based landslide susceptibility mapping by AHP method, a case study, Dena City, Iran. Journal of Basic and Applied Scientific Research. 2 (7), 6715, 2012.
  • 23. INTARAWICHIAN N., DASANANDA S. Frequency ratio model based landslide susceptibility mapping in lower Mae Chaem watershed, Northern Thailand. Environmental Earth Sciences. 64 (8), 2271, 2011.
  • 24. PRADHAN B., MANSOR S., PIRASTEH S., BUCHROITHNER M. F. Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. International Journal of Remote Sensing. 32 (14), 4075, 2011.
  • 25. CANOVAS J.A.B., STOFFEL M., CORONA C., SCHRAML K., GOBIET A., TANI S., SINABELL F., FUCHS S., KAITNA R. Debris-flow risk analysis in a managed torrent based on a stochastic life-cycle performance. Science of the Total Environment. 557, 142-153, 2016.
  • 26. LI Z., SHI W., LU P., YAN L., WANG Q., MIAO Z. Landslide mapping from aerial photographs using change detection-based Markov random field. Remote Sensing of Environment. 187, 76, 2016.
  • 27. VON RUETTE J., LEHMANN P., OR D. Linking rainfall-induced landslides with predictions of debris flow runout distances. Landslides. 13 (5), 1097, 2016.
  • 28. FREY H., HUGGEL C., BUHLER Y., BUIS D., DULCE BURGA M., CHOQUEVILCA W., FERNANDEZ F., HERNANDEZ J. G., GIRALDEZ C., LOARTE E., MASIAS P., PORTOCARRERO C., VICUNA L., WALSER M. A robust debris-flow and GLOF risk management strategy for a data-scarce catchment in Santa Teresa, Peru. Landslides. 13 (6), 1493, 2016.
  • 29. AHMAD I., FAWAD M., AKBAR M., ABBAS A. Regional Frequency Analysis of Annual Peak Flows in Pakistan Using Linear Combination of Order Statistics. Polish Journal of Environmental Studies. 25 (6), 1, 2016.
  • 30. KAYASTHA P., DHITAL M.R., SMEDT F.D. Evaluationand comparison of GIS based landslide susceptibility mapping procedures in Kulekhani watershed, Nepal. Journal of the Geological Society of India. 81 (2), 219, 2013.
  • 31. PRADHAN B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences. 51 (2), 350, 2013.
  • 32. DEVKOTA K.C., REGMI A.D., POURGHASEMI H.R., YOSHIDA K., PRADHAN B., RYU I.C., DHITAL M.R., ALTHUWAYNEE O.F. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural Hazards. 65 (1), 135, 2013.
  • 33. AKGUN A., KıNCAL C., PRADHAN B. Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). Environmental Monitoring & Assessment. 184 (9), 5453, 2012.
  • 34. PENG S.H., SHIEH M.J., FAN S.Y. Potential Hazard Map for Disaster Prevention Using GIS-Based Linear Combination Approach and Analytic Hierarchy Method. Journal of Geographic Information System. 4 (5), 403, 2012.
  • 35. ROZOS D., BATHRELLOS G.D., SKILLODIMOU H.D. Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County of Peloponnesus, Greece. Environmental Earth Sciences. 63 (1), 49, 2011.
  • 36. AYALEW L., YAMAGISHI H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology. 65 (1-2), 15, 2005.
  • 37. SEZER E.A., NEFESLIOGLU H.A., OSNA T. An expert-based landslide susceptibility mapping (LSM) module developed for Netcad Architect Software. Computers & Geosciences. 98, 26, 2017.
  • 38. WANG W., ZHANG H., ZHENG L., ZHANG Y., WU Y., LIU S. A new approach for modeling landslide movement over 3D topography using 3D discontinuous deformation analysis. Computers and Geotechnics. 81, 87, 2017.
  • 39. LEE S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing. 26 (7), 1477, 2005.
  • 40. LIU J.G., MASON P.J., CLERICI N., CHEN S., DAVIS A., MIAO F., DENG H., LIANG L. Landslide hazard assessment in the Three Gorges area of the Yangtze river using ASTER imagery: Zigui-Badong. Geomorphology. 61 (1-2), 171, 2004.
  • 41. PETSCHKO H., BELL R., GLADE T. Effectiveness of visually analyzing LiDAR DTM derivatives for earth and debris slide inventory mapping for statistical susceptibility modeling. Landslides. 13 (5), 857, 2016.
  • 42. NOURANI V., PRADHAN B., GHAFFARI H., SHARIFI S. S. Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models. Natural Hazards. 71 (1), 523, 2014.
  • 43. AUTHOR S.L.C., CHOI J., MIN K. Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. International Journal of Remote Sensing. 25 (11), 2037, 2004.
  • 44. MENG F.Q., GUANG-JIE L.I., WANG Q.B., QIN S.W., ZHAO H.Q., XIN J. Research on early warning of debris flow based on efficacy coefficient method. Rock & Soil Mechanics. 33 (3), 835, 2012.
  • 45. BAY S.D., PAZZANI M.J. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery. 5 (3), 213, 2001.
  • 46. WANG Y.C., SHANG Y.Q., SUN H.Y., YAN X.S. Study of prediction of rockburst intensity based on efficacy coefficient method. Yantu Lixue/rock & Soil Mechanics. 31 (2), 529, 2010.
  • 47. WANG M., ZHANG F., LIU Z. Evaluation method of the multi-attribute scheme based on entropy weight of fuzzy information. Systems Engineering & Electronics. 28 (10), 1523, 2006.
  • 48. WEI Q., YAN H. A method of transferring polyhedron between the intersection-form and the sum-form. Computers & Mathematics with Applications. 41 (10), 1327, 2001.
  • 49. CAI W. Introduction of Extenics. Systems Engineering-Theory & Practice. 18 (1), 76, 1998.
  • 50. YANG C., CAI W., TU X. Research, application and development on extenics. Journal of Systems Science and Mathematical Sciences. 36 (9), 1507, 2016.
  • 51. YE J. Application of extension theory in misfire fault diagnosis of gasoline engines. Expert Systems with Applications. 36 (2), 1217, 2009.
  • 52. WANG M.H., TSENG Y.F., CHEN H.C., CHAO K.H. A novel clustering algorithm based on the extension theory and genetic algorithm. Expert Systems with Applications. 36 (4), 8269, 2009.
  • 53. ZHENG G., JING Y., HUANG H., ZHANG X., GAO Y. Application of Life Cycle Assessment (LCA) and extenics theory for building energy conservation assessment. Energy. 34 (11), 1870, 2009.
  • 54. XU W., YU W., ZHANG G. Prediction method of debris flow by logistic model with two types of rainfall: a case study in the Sichuan, China. Natural Hazards. 62 (2), 733, 2012.
  • 55. MILLER S., BREWER T., HARRIS N. Rainfall thresholding and susceptibility assessment of rainfall-induced landslides: application to landslide management in St Thomas, Jamaica. B Eng Geol Environ. 68 (4), 539, 2009.
  • 56. BUI D.T., TUAN T.A., HOANG N.D., THANH N.Q., NGUYEN D.B., LIEM N.V., PRADHAN B. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides., 1, 2016.
  • 57. WEI F., HU K., CHEN J. Determination of Effective Antecedent Rainfall for Debris Flow Forecast. Journal of Mountain Research. 4, 11, 2005.
  • 58. LOURAKIS M.I. A brief description of the Levenberg-Marquardt algorithm implemented by levmar. Foundation of Research and Technology. 4, 1, 2005.
  • 59. DAI F.C., LEE C.F. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology. 42 (3-4), 213, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-8e7af2c4-831a-49d6-b7a0-54394ff17b20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.