PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Nitrogen-fixing bacterial communities exhibit strong spatial structure along a slope gradient in karst shrublands ecosystem

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Environmental heterogeneity is a primary factor in determining soil microbial spatial patterns. However, few studies have demonstrated a link between environmental heterogeneity and the spatial patterns in free-living nitrogen-fixing bacteria, which are important in nitrogen cycling. Here, quantitative polymerase chain reaction and terminal restriction fragment length polymorphism were used to determine the spatial distribution of free-living nitrogen-fixing bacteria along a slope gradient. Plant communities were evaluated through field surveys, and basic soil properties were measured in the laboratory. Soil properties (e.g., soil available phosphorus, soil organic carbon, and total nitrogen) were higher in upper- and middle -slope soils than in lower-slope soils, while bacterial abundance was the opposite. Bacterial and plant communities all varied along the slope gradient. Redundancy analysis revealed that bacterial community composition was closely linked to pH, soil organic carbon, available phosphorus, and total nitrogen. These results indicate that free-living nitrogen-fixing bacterial communities show strong spatial structure along a slope gradient, and emphasize the importance of soil heterogeneity in affecting bacterial spatial patterns in a karst region.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3369-3376,fig.,ref.

Twórcy

autor
  • Institute of Karst Geology, CAGS, Karst Dynamics Laboratory, MLR, Guilin, China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
  • Key Laboratory of Karst Dynamics, Ministry of Nature and Resources and Guangxi Zhuang Autonomous, Institute of Karst Geology, Chinese Academy of Geological Science, Karst Dynamics Laboratory, Ministry of Nature and Resources, Guilin, 541004, China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
  • Key Laboratory of Karst Dynamics, Ministry of Nature and Resources and Guangxi Zhuang Autonomous, Institute of Karst Geology, Chinese Academy of Geological Science, Karst Dynamics Laboratory, Ministry of Nature and Resources, Guilin, 541004, China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
  • Key Laboratory of Karst Dynamics, Ministry of Nature and Resources and Guangxi Zhuang Autonomous, Institute of Karst Geology, Chinese Academy of Geological Science, Karst Dynamics Laboratory, Ministry of Nature and Resources, Guilin, 541004, China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
  • Key Laboratory of Karst Dynamics, Ministry of Nature and Resources and Guangxi Zhuang Autonomous, Institute of Karst Geology, Chinese Academy of Geological Science, Karst Dynamics Laboratory, Ministry of Nature and Resources, Guilin, 541004, China

Bibliografia

  • 1. LIU J.J., SUI Y.Y., YU Z.H., SHI Y., CHU H.Y., JIN J., LIU X.B. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 70, 113, 2014.
  • 2. BAHRAM M., PEAY K.G., TEDERSOO L. Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol. 205 (4), 1454, 2015.
  • 3. LIU J.J., SUI Y.Y., YU Z.H., SHI Y., CHU H.Y., JIN J., LIU X.B., WANG G.H. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem. 83, 29, 2015.
  • 4. SHEN C.C., XIONG J.B., ZHANG H.Y., FENG Y.Z., LIN X.G., LI X.Y., LIANG W.J., CHU H.Y. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204, 2013.
  • 5. BONNETT P.E., MOORE C.E., BURBACH M. Vegetable oils as nitrogen fixing bacteria preservative. Google Patents, 2012.
  • 6. PEOPLES M.B., HERRIDGE D.F., LADHA J.K. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil, 174, 3, 1995.
  • 7. LI D.J., WANG Z.C., SUN X.B., ZHANG Q.S., WANG K.L. Tree species effects on asymbiotic N2 fixation in subtropical karst and non karst forests. Soil Biol. Biochem.117,185, 2018.
  • 8. REED S.C., CLEVELAND C.C., TOWNSEND A.R. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu. Rev. Ecol. Evol. S. 42, 489, 2011.
  • 9. LIU L., HE X.Y., WANG K.L., XIE Y.J., XIE Q., O’DONNELL A.G., CHEN C.Y. The Bradyrhizobium-legume symbiosis is dominant in the shrubby ecosystem of the Karst region, Southwest China. Eur. J. Soil Biol. 68, 1, 2015.
  • 10. ZHANG W., ZHAO J., PAN F.J., LI D.J., CHEN H.S., WANG K.L. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China. Plant Soil, 39 (1-2), 77, 2015.
  • 11. ZHANG W., CHEN H.S., WANG K.L., HOU Y., ZHANG J.G. Spatial variability of soil organic carbon and available phosphorus in a typical Karst depression, northwest of Guangxi. Acta Ecology Ica Sinica, 27 (12), 5168, 2007.
  • 12. LIANG Y.M., SU Y.R., HE X.Y., CHEN X.B., HU Y.J. Various effects on the abundance and composition of arbuscular mycorrhizal fungal communities in soils in karst shrub ecosystems. Environmental Science, 38 (11), 4828, 2017 [In Chinese].
  • 13. MIRZA B.S., POTISAP C., NüSSLEIN K., BOHANNAN B.J.M., RODRIGUES J.L.M. Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest. Appl. Environ. Microbiol. 80 (1), 281, 2014.
  • 14. PRESCOTT C.E., GRAYSTON S.J. Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecol. Mana. 309, 19, 2013.
  • 15. LIANG Y.M., PAN F.J., HE X.Y., CHEN X.B., SU Y.R. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region. Environ. Sci. Pollut. R. 23 (18), 18482, 2016.
  • 16. CHEN X.B., SU Y.R., HE X.Y., WEI Y.W., WEI W.X., WU J.S. Soil bacterial community composition and diversity respondto cultivation in Karst ecosystems. World J. Microb. Biot. 28 (1), 205, 2012.
  • 17. CHEN Z., LIU J.B., WU M.N., XIE X.L., WU J.S., WEI W.X. Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microb. Ecol. 63,446, 2012.
  • 18. YUAN H.Z., GE T.D., CHEN C.Y., O’DONNELL A.G., WU, J.S. Significant role for microbial autotrophy in the sequestration of soil carbon. Appl. Environ. Microbiol. 78 (7), 23, 2012.
  • 19. BREMER J.M. Total nitrogen. In: Black CA (ed) Methods of soil analysis. American Society of Agricultural, USA, 2, 1149, 1965.
  • 20. COLWELL J.D. The estimation of phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Aust. J. Exp. Agric. Anim. Husb. 3, 190, 1963.
  • 21. REARDON C.L., GOLLANY H.T., WUEST S.B. Diazotroph community structure and abundance i n wheat-fallow and wheat-pea crop rotations. Soil Biol. Biochem. 69, 406, 2014.
  • 22. GOTSCH S. Land cover and slope position affect water use and microclimate in the tropical montane cloud forests of Central Veracruz, Mexico. New Frontiers in Tropical Biology: The Next 50 Years (A Joint Meeting of ATBC and OTS). Atbc, 2013.
  • 23. DELUCA T.H., DRINKWATER L.E., WIEFLING B.A., DENICOLA D.M. Free-living nitrogen-fixing bacteria in temperate cropping systems: influence of nitrogen source. Biol. Fertil. Soils 23,140, 1996.
  • 24. SENE G., SAMBA-MBAYE R., THIAO, M., KHASA D., KANE A, Manga A., MBAYE M.S., SYLLA S.N. The abundance and diversity of legume-nodulating rhizobia and arbuscular mycorrhizal fungal communities in soil samples from deforested and man-made forest systems in a semiarid Sahel region in Senegal. Eur. J. Soil Biol. 52, 30, 2012.
  • 25. ROUSK K., DEGBOE J., MICHELSEN A., BRADLEY R., BELLENGER J.P. Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems. New Phytol. 214, 97, 2017.
  • 26. ZHANG Y., CAO C.Y., PENG M., XU X.J., ZHANG P., YU Q.J., SUN T. Diversity of nitrogen-fixing, ammonia-oxidizing, and denitrifying bacteria in biological soil crusts of a revegetation area in Horqin Sandy Land, Northeast China. Ecol. Eng. 71, 71, 2014.
  • 27. XU C.W., YANG M.Z., CHEN Y.J., CHEN L.M., ZHANG D.Z., MEI L., SHI Y.T., ZHANG H.B. Changes in non-symbiotic nitrogen-fixing bacteria inhabiting rhizosphere soils of an invasive plant Ageratina adenophora. Appl. Soil Ecol. 54, 32, 2012.
  • 28. ZHALNINAA K., DIAS R., DöRR DE QUADROS P., DAVIS-RICHRADSON A., Camargo F.A.O., Clark I.M., MCGRATH S.P., HIRSCH P.R., TRIPLETT E.W. Soil pH determines microbial diversity and composition in the park grass experiment. Microb. Ecol. 69 (2), 395, 2015.
  • 29. CHEN W.X., WANG E.T. Rhizobia in China, Science Press, Beijing, 2011.
  • 30. LI Q.Q., WANG E.T., ZHANG Y.Z., ZHANG Y.M., TIAN C.F., SUI X.H., CHEN W.F., CHENW.X. Diversity and Biogeography of Rhizobia Isolated from Root Nodules of Glycine max Grown in Hebei Province, China. Microb. Ecol. 61 (4), 917, 2011.
  • 31. ZHANG D., ZHANG Y.X., QU L.Y., MA K.M., DAI S.D. Effects of slope position on soil microbial biomass of Quercus liaotungensis forest in Dongling Mountain. Acta Ecologica Sinica, 32 (20), 6412, 2012 [In Chinese).
  • 32. ZHANG X.B., BAI X.Y., HE X.B. Soil creeping in the weathering crust of carbonate rocks and underground soil losses in the karst mountain areas of southwest china. Carbonate Evaporite, 26 (2), 149, 2011.
  • 33. BAI X. H., ZHANG J.T., CAO K., WANG Y.Q., SEHRISH S., CAO G. Relationship between forest communities and the environment in the Xiaowutai Mountain National Nature reserve, Hebei. Acta Ecologica Sinica, 37 (11), 3683, 2017 [In Chinese].
  • 34. TAKAHASHI K., MURAYAMA Y. Effects of topographic and edaphic conditions on alpine plant species distribution along a slope gradient on Mount Norikura, central Japan. Ecol. Res. 29 (5), 823, 2014.
  • 35. DU H., PENG W.X., SONG T.Q., ZENG F.P., WANG K.L., SONG M., ZHANG H. Spatial pattern of woody plants and their environment interpretation in karst forest of southwest China. Plant Biosyst. 149, 1, 2013.
  • 36. PENG W.X., SONG T.Q., ZENG F.P., WANG K.L., DU H., LU S.Y. Relationships between woody plants and environmental factors in karst mixed evergreen-deciduous broadleaf forest, southwest China. J. Sci. Food Agr. 10 (1), 890, 2012.
  • 37. FU B.J., LIU S.L., MA K.M., ZHU Y.G. Relationships between soil characteristics, topography and plant diversity in a heterogeneous deciduous broad-leaved forest near Beijing, China. Plant Soil, 261 (1-2), 47, 2004.
  • 38. ZHANG Z.H., HU G., NI J. Effects of topographical and edaphic factors on the distribution of plant communities in two subtropical karst forests, southwestern China. J. Mt. Sci. 10 (2), 95, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8e18d3e9-a5f9-4a42-aad2-be6ea1dc18cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.