PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 2 |

Tytuł artykułu

Belgrade’s urban transport CO2 emissions from an international perspective

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Focusing on the implementation of increas ingly strict energy and emission standards, the effect of the rapid increase in the use of motor vehicles on the degree of air pollution and energy consumption is completely neglected. All recent technological improvements and changes in the transport sector: substitution of fuels, increased use of diesel vehicles, direct gasoline injection, supercharging, electric vehicles, hybrid vehicles, etc., cannot offset massive growth in traffic, combined with significantly heavier, more powerful, more luxurious and thus more fuel-consuming vehicles. Hence, in this paper we focused on the carbon emissions and energy consumption of urban transport in Belgrade from an international perspective. Although the level of automobile CO2 emissions in Belgrade is still very low at 228 CO2 kg/per capita, due to the low volume of automobile passenger kilometres (1,502 pkm), the fact must not be overlooked that automobile mobility is of major importance to the total level of energy consumption in urban transport, and this can change surprisingly quickly. Only if Belgrade adopts transport and spatial development strategies similar to those applied by wealthy Asian metropolises at a similar stage of development is there high probability that its total urban transport CO2 emissions will stop at a reasonable level of around 700-800 kg CO2/per capita. Belgrade can prevent a dramatic increase in CO2 emissions and energy consumption (and mitigate the negative local environmental effects of traffi c congestion, traffi c accidents, and air pollution), only if it: 1. Implements a more decisive strategy to limit private vehicle use while its level of car passenger km (PKT) is still relatively low. 2. Does not try to solve its transport problems only by trying to build urban road infrastructure (bridges and ring roads). 3. Concentrates on more CO2 and energy-effi cient urban transport systems, while at the same time …. 4. Developing urban rail systems (metro or LRT) with exclusive tracks that are immune to traffic congestion on urban streets.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

2

Opis fizyczny

p.635-646,fig.,ref.

Twórcy

  • Faculty of Geography, University of Belgrade Belgrade, Studentski trg 3/3, Belgrade, Serbia

Bibliografia

  • 1. OECD/IEA. Key World Energy Statistics. OECD/IEA, 2011.
  • 2. METZ B., DAVIDSON O.R., BOSCH P.R., DAVE R., MEYER L.A. (Eds.). Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, 2007.
  • 3. IEA. World Energy Outlook. IEA, 2008
  • 4. CREUTZIG F., MCGLYNN E., MINX J., EDENHOFER O. Climate policies for road transport revisited (I): Evaluation of the current framework. Energy policy. 39 (5), 2396, 2011.
  • 5. STERN N. The Economics of Climate Change: Stern Review. Cambridge University Press: Cambridge, 2007.
  • 6. RAUX C. The potential for CO2 emissions trading in transport: the case of personal vehicles and freight. Energy efficiency. 3 (2), 133, 2010.
  • 7. KENWORTHY J. Decoupling urban car use and metropolitan GDP growth. World Transport Policy and Practice, 19 (4), 7, 2013.
  • 8. NEWMAN P., KENWORTHY J. 'Peak Car Use': Understanding the Demise of Automobile Dependence. World Transport Policy and Practice. 17 (2), 31-42, 2011.
  • 9. JOUMARD R. The stakes of air pollution in the transport sector, from the French case. Atmospheric Environment. 39, 2491, 2005.
  • 10. ACEA-Association Des Constructeurs Européens D'automobiles. ACEA' s CO2 commitment, 2002. Available at: http://www.acea.be/acea/ brochure_co2.pdf. Accessed February 13, 2015.
  • 11. MEHLIN M., GUEHNERMANN A., AOKI R. Preparation of the 2003 review of the commitment of car manufacturers to reduce CO2 emissions from M1 vehicles. Final Report of Task A: Identifying and assessing the reasons for the CO2 reductions achieved between 1995 and 2003. Berlin: German Aerospace Center, Institute of Transport Research, 2004.
  • 12. HEAVENRICH R.M. Light-Duty Automotive Technology and Fuel Economy Trends, 1975 Through 2005. U.S. Environmental Protection Agency Report EPA-420-R-05-001. US EPA, 2005.
  • 13. FRONDEL M., RITTER N., VANCE C. Heterogeneity in the rebound effect: Further evidence for Germany. Energy Economics. 34, 461, 2012.
  • 14. FONTARAS G., SAMARAS Z. A quantitative analysis of the European Automakers' voluntary commitment to reduce CO2 emissions from new passenger cars based on independent experimental data. Energy Policy. 35, 2239, 2007.
  • 15. EIA - U.S. Energy InformationAdministration. International Energy Outlook 2013. Washington DC: EIA, 2013.
  • 16. SCHAFER A. Regularities in Travel Demand: An International Perspective. Journal of Transportation and Statistics. 3 (3), 1, 2000.
  • 17. IEA-International Energy Agency. Transport, Energy and CO2 - Moving Toward Sustainability. OECD/IEA, 2009.
  • 18. IEA-International Energy Agency. World Energy Outlook. Paris: International Energy Agency, 2010.
  • 19. CHARPENTIER A., BERGERSON J., MACLEAN H. Understanding the Canadian oil sands industry's greenhouse gas emissions. Environmental research letters. 4, 2009.
  • 20. JOVANOVIĆ M. Kuznets curve and urban transport - the scope of I+M programs. Glasnik srpskog geografskog društva (Bulletin of the Serbian Geographical Society). 92 (4), 127, 2012.
  • 21. Federal Environmental Agency. Reducing CO2 emissions in the transport sector - A description of measures and update of potentials. Berlin: Federal Environmental Agency, 2003.
  • 22. OECD. Cities and Climate Change. Paris: OECD, 2010.
  • 23. UN-Habitat. Urban patterns for a green economy: leveraging density. UN-Habitat, 2012.
  • 24. MACLEAN L. H., LAVE L. Evaluating automobile fuel/ propulsion system technologies. Progress in Energy and Combustion Science. 29, 1, 2003.
  • 25. PASAOGLU G., HONSELAAR M.,THIEL C. Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe. Energy Policy, 40, 404, 2012.
  • 26. THIEL C., PERUJO A., MERCIER A. Cost and CO2 aspects of future vehicle options in Europe under new energy policy scenarios. Energy Policy, 38, 7142, 2010.
  • 27. THIEL C., SCHMIDT J., VAN ZYL A., SCHMID E. Cost and well-to-wheel implications of the vehicle fleet CO2 emission regulation in the European Union. Transportation Research Part A, 63, 25-42, 2014.
  • 28. ELGOWAINY A., ROUSSEAUA A., WANG M., RUTH M., ANDRESS D., WARDD J., JOSECK F., NGUYEND T., DAS S. Cost of ownership and well-to-wheels carbon emissions/oil use of alternative fuels and advanced light-duty vehicle technologies. Energy for Sustainable Development, 17, 626, 2013.
  • 29. PRIEUR A., TILAGONE R. A detailed Well to Wheel Analysis of CNG compared to diesel oil and gasoline for the French and the European markets. SAE Technical Paper 2007-01-0037, 2007.
  • 30. KENWORTHY J., LAUBE F, NEWMAN P., BARTER P, RAAD T., POBOON C., GUIA B. An International Sourcebook of Automobile Dependency in Cities. Un. Press of Colorado: Boulder, 1999.
  • 31. KENWORTHY J.R., LAUBE F. The Millennium Cities Database. UITP, Brussels, 2001
  • 32. World Bank. Cities on the Move. World Bank: Washington DC, 2002
  • 33. NEWMAN P., KENWORTHY J.R. The End of Automobile Dependence. Island press: Washington, 2015.
  • 34. United Nations. Energy Balances 2012. United Nations: New York, 2015. Available at: http://www. http://unstats. un.org/unsd/energy/balance/default Accessed September 23, 2015.
  • 35. Institute For Informatics And Statistics. Statistical Yearbook of Belgrade 2012. Institute for Informatics and Statistics, 2013.
  • 36. Faculty Of Transport And Traffic Engineering. Belgrade Transport Model. Faculty of Transport and Traffic Engineering: Belgrade, 2007 [In Serbian].
  • 37. Faculty Of Transport And Traffic Engineering. Istraživanje karakteristika transportnih zahteva, transportne ponude, efikasnosti i kvaliteta sistema javnog masovnog transporta putnika u Beogradu (Study of the characteristics of transport demands, transport supply, efficiency and quality of the system of mass public transport of passengers in Belgrade). Faculty of Traffic and Transport Engineering - Institute SF: Belgrade, 2002 [In Serbian].
  • 38. JOVANOVIĆ M. Urban transport energy consumption -Belgrade case study. Thermal Science. 19 (6), 2079, 2015.
  • 39. JOVANOVIĆ M., RATKAJ I. Functional Metamorphosis of New Belgrade. disP - The planning review, 50 (4), 54, 2014.
  • 40. VUCHIC V. Urban Transit Systems and Technology. John Wiley & Sons, 2007.
  • 41. NEWMAN P., KENWORTHY J. Urban Design to Reduce Automobile Dependence. Opolis, 2 (1), 35-52, 2006.
  • 42. JOVANOVIĆ М. Meduzavisnost koncepta urbanog razvoja i saobraćajne strategije velikog grada (Interdependence of Urban Transport Strategy and Spatial Development of a Metropolis). Faculty of Geography Belgrade: Belgrade, 2005 [In Serbian].
  • 43. BARTER P. An International Comparative Perspective on Urban Transport and Urban Form in Pacific Asia. Murdoch University: Perth, 2000.
  • 44. KENWORTHY J. Transport Energy Use and Greenhouse Gases in Urban Passenger Transport Systems: A Study of 84 Global Cities, Third Conference of the Regional Government Network for Sustainable Development, Notre Dame University, Fremantle, Western Australia, September 17, 2003.
  • 45. DUNN J. Driving Forces; The Automobile, Its Enemies and the Politics of Mobility. The Brookings Institution: Washington DC, 1998.
  • 46. United Nations. World Urbanization Prospects: the 2009 revision. United Nations: New York, 2010.
  • 47. CHATELUS G. Central and Eastern European countries. In: Transport: New Problems, New Solutions. ECMT: Paris, 1996.
  • 48. KENWORTHY J. Total Daily Mobility Patterns and Their Policy Implications for Forty-Three Global Cities in 1995 and 2005. World Transport Policy and Practice. 20 (1), 2014.
  • 49. OKA S., GRUBOR B., DAKIĆ D., ILIĆ M., MANOVIC V., ERIC M., PAPRIKA M., OKA N., BELOŠEVIC S., MLADENOVIC R., CRNOMARKOVIC N. Investigation of the suitability of Serbian lignite Kolubara and Kovin for burning in CFBC boilers. Termotehnika. 1-4, 83, 2004.
  • 50. BRNABIC A. Serbian Energy and Climate Policy: a Critical Perspective. SÜDOST EUROPA Mitteilungen, 2014.
  • 51. JOVIC J., DORIC V. Traffic and environmental street network modelling: Belgrade case study. Transport. 25 (2), 155, 2010.
  • 52. CERVERO R., HANSEN M. Induced Travel Demand and Induced Road Investment: A Simultaneous Equation Analysis. Journal of Transport Economics and Policy. 36 (3), 469, 2002.
  • 53. JOVANOVIC M. Sustainable urban transport and spatial development of Belgrade. In: Sustainable urban & transport planning - SUTP 2013. MARTINS N. (Ed.). UNIDO: Belgrade, 75, 2013.
  • 54. KORICA R., FURUNDZIC D. Metro or Light Rail: Belgrade Transport Proposals, Proceedings, Real Corp 2011-Change for Stability: Lifecycles of Cities and Regions, Essen, Germany, 613, 2009.
  • 55. LOO B., LI D. Developing metro systems in the People's Republic of China: Policy and gaps. Transportation. 33, 115, 2006.
  • 56. JOVANOVIC M. Gradski saobraćaj i životna sredina (Urban Transport and Environment). Faculty of Geography Belgrade: Belgrade, 2014 [In Serbian].

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8dfb837a-ce3d-4ac4-ad5b-ede9ce097851
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.