PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 68 | 4 |

Tytuł artykułu

Footprint areas of pollen from alder (Alnus) and birch (Betula) in the UK (Worcester) and Poland (Wroclaw) during 2005–2014

Treść / Zawartość

Warianty tytułu

PL
Obszary źródłowe pyłku olszy (Alnus) i brzozy (Betula) w Wielkiej Brytanii (Worcester) i Polsce (Wrocław), w latach 2005–2014

Języki publikacji

EN

Abstrakty

EN
In this study we analyzed daily pollen concentrations of Alnus spp. and Betula spp. from Worcester, UK and Wrocław, Poland. We analyzed seasonality, annual pollen index and footprint areas for the observed pollen concentrations by using the trajectory model hybrid single particle Lagrangian integrated trajectory (HYSPLIT). We examined 10 years of data during the period 2005–2014 and found substantial differences in the seasonality, pollen indices and footprint areas. For both genera, concentrations in Wrocław are in general much higher, the seasons are shorter and therefore more intense than in Worcester. The reasons appear to be related to the differences in overall climate between the two sites and more abundant sources in Poland than in England. The footprint areas suggest that the source of the pollen grains are mainly local trees but appear to be augmented by remote sources, in particular for Betula spp. but only to a small degree for Alnus spp. For Betula spp., both sites appear to get contributions from areas in Germany, the Netherlands and Belgium, while known Betula spp. rich regions in Russia, Belarus and Scandinavia had a very limited impact on the pollen concentrations in Worcester and Wrocław. Substantial and systematic variations in pollen indices are seen for Betula spp. in Wrocław with high values every second year while a similar pattern is not observed for Worcester. This pattern was not reproduced for Alnus spp.
PL
Praca dotyczy dobowych stężeń pyłku olszy (Alnus spp.) oraz brzozy (Betula spp.) notowanych w Worcester (Wielka Brytania) oraz we Wrocławiu (Polska). Przeanalizowano sezonowość, indeks pyłkowy oraz obszary źródłowe pyłku przy zastosowaniu modelu HYSPLIT (hybrid single particle Lagrangian integrated trajectory model). W badaniu uwzględniono dane pomiarowe z okres 10 lat (2005–2014). Zaobserwowano istotne różnice w sezonowości, indeksie pyłkowym oraz obszarach źródłowych dla dwóch analizowanych lokalizacji. Zarówno dla olszy, jak i dla brzozy, stężenia pyłku są na ogół znacznie wyższe i sezon pyłkowy jest krótszy we Wrocławiu, stąd też jest on bardziej intensywny, niż w Worcester. Wynika to najprawdopodobniej z różnic w warunkach klimatycznych pomiędzy dwoma stacjami i z większej liczby lokalnych źródeł pyłku w Polsce niż w Anglii. Obliczenia przeprowadzone z modelem HYSPLIT wskazują, że źródłem ziaren pyłku są głównie drzewa lokalne, ale zaznacza się również rola transportu odległego, ale w szczególności w przypadku pyłku brzozy, a tylko w niewielkim stopniu w przypadku olszy. W przypadku brzozy, na stężenie pyłku notowanego w obu stacjach istotnie wpływa pyłek pochodzący z obszaru Niemiec, Holandii i Belgii, podczas gdy powszechnie znane obszary źródłowe w Rosji, Białorusi i Skandynawii mają bardzo ograniczony wpływ na stężenie pyłku w Worcester i we Wrocławiu. Ponadto zaobserwowano wyraźne, systematyczne zróżnicowanie indeksu pyłkowego brzozy we Wrocławiu, z wysokimi wartościami występującymi co drugi rok. Podobna zależność nie jest obserwowana dla Worcester. Wyraźnych zróżnicowań indeksu pyłkowego pomiędzy latami nie notowano dla olszy w żadnej z lokalizacji.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

68

Numer

4

Opis fizyczny

p.315-324,fig.,ref.

Twórcy

autor
  • National Pollen and Aerobiological Research Unit, Institute of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ, Worcester, U.K.
autor
  • Department of Climatology and Atmosphere Protection, University of Wroclaw, Aleksandra Kosiby 8, 51-621 Wroclaw, Poland
autor
  • National Pollen and Aerobiological Research Unit, Institute of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ, Worcester, U.K.
  • Laboratory of Paleobotany, Department of Stratigraphical Geology, Institute of Geological Sciences, University of Wroclaw, Cybulskiego 30, 50-205 Wroclaw, Poland
  • National Pollen and Aerobiological Research Unit, Institute of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ, Worcester, U.K.
autor
  • Department of Climatology and Atmosphere Protection, University of Wroclaw, Aleksandra Kosiby 8, 51-621 Wroclaw, Poland
  • Department of Climatology and Atmosphere Protection, University of Wroclaw, Aleksandra Kosiby 8, 51-621 Wroclaw, Poland

Bibliografia

  • Ipsen H, Lowenstein H. Basic features of cross-reactivity in tree and grass pollen allergy. Clin Rev Allergy Immunol. 1997;15:389-396. http://dx.doi.org/10.1007/BF02737734
  • Valenta R, Breiteneder H, Pettenburger K, Breitenbach M, Rumpold H, Kraft D, et al. Homology of the major birch-pollen allergen, Bet v I, with the major pollen allergens of alder, hazel, and hornbeam at the nucleic acid level as determined by cross-hybridization. J Allergy Clin Immunol. 1991;87:677-682. http://dx.doi. org/10.1016/0091-6749(91)90388-5
  • Skjoth CA, Šikoparija B, Jäger S. Pollen sources. In: Sofiev M, Bergmann KC, editors. Allergenic pollen. Dordrect: Springer; 2013. p. 9-27. http://dx.doi.org/10.1007/978-94-007-4881-1_2
  • van Ree R, van Leeuwen WA, Akkerdaas JH, Aalberse RC. How far can we simplify in vitro diagnostics for Fagales tree pollen allergy? A study with three whole pollen extracts and purified natural and recombinant allergens. Clin Exp Allergy. 1999;29:848-855. http:// dx.doi.org/10.1046/j.1365-2222.1999.00521.x
  • Gumowski PI, Clot B, Davet A, Saad S, Hassler H, Dunoyer-Geindre S. The importance of hornbeam (Carpinus sp.) pollen hypersensitivity in spring allergies. Aerobiologia. 2000;16:83-86. http://dx.doi. org/10.1023/A:1007600313862
  • Burbach GJ, Heinzerling LM, Edenharter G, Bachert C, Bindslev-Jen-sen C, Bonini S, et al. GA(2)LEN skin test study II: clinical relevance of inhalant allergen sensitizations in Europe. Allergy. 2009;64:1507-1515. http://dx.doi.org/10.1111/j.1398-9995.2009.02089.x
  • Grewling Ł, Jackowiak B, Nowak M, Uruska A, Smith M. Variations and trends of birch pollen seasons during 15 years (1996-2010) in relation to weather conditions in Poznań (western Poland). Grana. 2012;51:280-292. http://dx.doi.org/10.1080/00173134.2012.700727
  • Skjoth CA, Smith M, Brandt J, Emberlin J. Are the birch trees in southern England a source of Betula pollen for north London? Int J Biome-teorol. 2009;53:75-86. http://dx.doi.org/10.1007/s00484-008-0192-1
  • Adams-Groom B, Emberlin J, Corden J, Millington W, Mullins J. Predicting the start of the birch pollen season at London, Derby and Cardiff, United Kingdom, using a multiple regression model, based on data from 1987 to 1997. Aerobiologia. 2002;18:117-123. http:// dx.doi.org/10.1023/A:1020698023134
  • Myszkowska D. Prediction of the birch pollen season characteristics in Cracow, Poland using an 18-year data series. Aerobiologia. 2013;29:31-44. http://dx.doi.org/10.1007/s10453-012-9260-4
  • Hernandez-Ceballos MA, Skjoth CA, Garcia-Mozo H, Bolivar JP, Galan C. Improvement in the accuracy of back trajectories using WRF to identify pollen sources in southern Iberian Peninsula. Int J Biometeorol. 2014;58:2031-2043. http://dx.doi.org/10.1007/ s00484-014-0804-x
  • Veriankaite L, Siljamo P, Sofiev M, Sauliene I, Kukkonen J. Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia. 2010;26:47-62. http://dx.doi.org/10.1007/s10453-009-9142-6
  • Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimaki A. Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol. 2006;50:392-402. http://dx.doi.org/10.1007/s00484-006-0027-x
  • Mahura A, Korsholm U, Baklanov A, Rasmussen A. Elevated birch pollen episodes in Denmark: contributions from remote sources. Aerobiologia. 2007;23:171-179. http://dx.doi.org/10.1007/s10453-007-9061-3
  • Skjoth CA, Sommer J, Stach A, Smith M, Brandt J. The long range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clin Exp Allergy. 2007;37:1204-1212. http://dx.doi. org/10.1111/j.1365-2222.2007.02771.x
  • Skjoth CA, Sommer J, Brandt J, Hvidberg M, Geels C, Hansen K, et al. Copenhagen - a significant source of birch (Betula) pollen? Int J Biometeorol. 2008;52:453-462. http://dx.doi.org/10.1007/ s00484-007-0139-y
  • Skjoth CA, Baker P, Sadys M, Adams-Groom B. Pollen from alder (Alnus sp.), birch (Betula sp.) and oak (Quercus sp.) in the UK originate from small woodlands. Urban Climate. 2015;14:414-428. http://dx.doi. org/10.1016/j.uclim.2014.09.007
  • Linkosalo T, Ranta H, Oksanen A, Siljamo P, Luomajoki A, Kukkonen J, et al. A double-threshold temperature sum model for predicting the flowering duration and relative intensity of Betula pendula and B. pubescens. Agric For Meteorol. 2010;150:1579-1584. http://dx.doi. org/10.1016/j.agrformet.2010.08.007
  • Sakalli A. How can effect the synergy of climate change, soil units and vegetation groups the potential global distribution of plants up to 2300: a modelling study for prediction of potential global distribution and migration of the N2 fixing species Alnus spp. Biogeosciences Discuss. 2015;12:815-864. http://dx.doi.org/10.5194/bgd-12-815-2015
  • Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L, et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecology and Biogeography. 2012;21:50-63. http://dx.doi.org/10.1111/j.1466-8238.2010.00613.x
  • Newnham RM, Sparks TH, Skjoth CA, Head K, Adams-Groom B, Smith M. Pollen season and climate: Is the timing of birch pollen release in the UK approaching its limit? Int J Biometeorol. 2013;57:391-400. http://dx.doi.org/10.1007/s00484-012-0563-5
  • Frenguelli G, Bricchi E. The use of the pheno-climatic model for forecasting the pollination of some arboreal taxa. Aerobiologia. 1998;14:39-44. http://dx.doi.org/10.1007/BF02694593
  • Kasprzyk I. Flowering phenology and airborne pollen grains of chosen tree taxa in Rzeszów (SE Poland). Aerobiologia. 2003;19:113-120. http://dx.doi.org/10.1023/A:1024406819444
  • Hirst J. M. An automatic volumetric spore trap. Ann Appl Biol. 1952;39:257-265. http://dx.doi.org/10.1111/j.1744-7348.1952. tb00904.x
  • Malkiewicz M, Klaczak K, Drzeniecka-Osiadacz A, Krynicka J, Migała K. Types of Artemisia pollen season depending on the weather conditions in Wrocław (Poland), 2002-2011. Aerobiologia. 2014;30:13-23. http://dx.doi.org/10.1007/s10453-013-9304-4
  • Kasprzyk I. Non-native Ambrosia pollen in the atmosphere of Rzeszów (SE Poland), evaluation of the effect of weather conditions on daily concentrations and starting dates of the pollen season. Int J Biometeorol. 2008;52:41-351. http://dx.doi.org/10.1007/s00484-007-0129-0
  • Makra L, Santa T, Matyasovszky I, Damialis A, Karatzas K, Bergmann KC, et al. Airborne pollen in three European cities: detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. J Geophys Res. 2010;115. http:// dx.doi.org/10.1029/2010JD014743
  • Käpyla M, Penttinen A. An evaluation of the microscopial counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana. 1981;20:131-141. http://dx.doi.org/10.1080/00173138109427653
  • Goldberg C, Buch H, Moseholm L, Weeke ER. Airborne pollen records in Denmark, 1977-1986. Grana. 1988;27:209-217. http:// dx.doi.org/10.1080/00173138809428928
  • Kasprzyk I, Myszkowska D, Grewling Ł, Stach A, Šikoparija B, Skjoth CA, et al. The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznań, Poland: investigation of trends and possible transport of Ambrosia pollen from Ukraine. Int J Biometeorol. 2011;55:633-644. http://dx.doi.org/10.1007/s00484-010-0376-3
  • Skjoth CA, Sommer J, Frederiksen L, Gosewinkel Karlson U. Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmos Chem Phys. 2012;12:11107-11123. http://dx.doi.org/10.5194/ acp-12-11107-2012
  • Draxler R, Hess GD. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Australian Meteorological Magazine. 1998;47:295-308.
  • Draxler R, Stunder B, Rolph G, Stein A, Taylor A. Hysplit4 users guide, revision September 2014 [Internet]. 2014 [cited 2015 Sep 11]; Available from: http://www.arl.noaa.gov/documents/reports/ hysplit_user_guide.pdf
  • Fernández-Rodríguez S, Sadyś M, Smith M, Tormo-Molina R, Skjoth CA, Maya-Manzano JM, et al. Potential sources of airborne Alternaria spp. spores in south-west Spain. Sci Total Environ. 2015;533:165-176. http://dx.doi.org/10.1016/j.scitotenv.2015.06.031
  • Stach A, Smith M, Skjoth CA, Brandt J. Examining Ambrosia pollen episodes at Poznan (Poland) using back-trajectory analysis. Int J Biometeorol. 2007;51:275-286. http://dx.doi.org/10.1007/ s00484-006-0068-1
  • Šikoparija B, Smith M, Skjoth CA, Radišic P, Milkovska, S, Šimic et al. The Pannonian plain as a source of Ambrosia pollen in the Balkans. Int J Biometeorol. 2009;53:263-272. http://dx.doi.org/10.1007/ s00484-009-0212-9
  • Stach A, Emberlin J, Smith M, Adams-Groom B, Myszkowska D. Factors that determine the severity of Betula spp. pollen seasons in Poland (Poznań and Krakow) and the United Kingdom (Worcester and London), Int J Biometeorol. 2008;52:311-321. http://dx.doi. org/10.1007/s00484-007-0127-2
  • Pauling A, Rotach MW, Gehrig R, Clot C. A method to derive vegetation distribution maps for pollen dispersion models using birch as an example. Int J Biometeorol. 2012;56:949-958. http://dx.doi. org/10.1007/s00484-011-0505-7
  • Siljamo P, Sofiev M, Filatova E, Grewling Ł, Jäger S, Khoreva E, et al. A numerical model of birch pollen emission and dispersion in the atmosphere. Model evaluation and sensitivity analysis. Int J Biometeorol. 2013;57:125-136. http://dx.doi.org/10.1007/s00484-012-0539-5
  • Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, et al. Statistical mapping of tree species over Europe. Eur J For Res. 2011:145-157.
  • Skjoth CA, Geels C, Hvidberg M, Hertel O, Brandt J, Frohn LM, et al. An inventory of tree species in Europe - an essential data input for air pollution modelling. Ecol Modell. 2008;217:292-304. http:// dx.doi.org/10.1016/j.ecolmodel.2008.06.023
  • Estrella N, Menzel A, Krämer U, Behrendt H. Integration of flowering dates in phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence in Germany (1992-1999). Int J Biometeorol. 2006;51:49-59. http://dx.doi.org/10.1007/s00484-006-0038-7
  • Khwarahm N, Dash J, Atkinson P, Newnham RM, Skjoth CA, Adams-Groom B, et al. Exploring the spatio-temporal relationship between two key aeroallergens and meteorological variables in the United Kingdom. Int J Biometeorol. 2014;58:529-545. http://dx.doi.org/10.1007/ s00484-013-0739-7
  • Pauling A, Gehrig R, Clot B. Toward optimized temperature sum parameterizations for forecasting the start of the pollen season. Aerobiologia. 2014;30:45-57. http://dx.doi.org/10.1007/s10453-013-9308-0
  • Latalowa M, Mietus M, Uruska A. Seasonal variations in the atmospheric Betula pollen count in Gdansk (southern Baltic coast) in relation to meteorological parameters. Aerobiologia. 2002;18:33-43. http://dx.doi.org/10.1023/A:1014905611834
  • Dahl Ä, Galán C, Hajkova L, Pauling A, Sikoparija B, Smith M, et al. The onset, course and intensity of the pollen season. In: Sofiev M, Bergmann KC, editors. Allergenic pollen: a review of the production, release, distribution and health impacts. Dordrecht: Springer; 2013. p. 29-70. http://dx.doi.org/10.1007/978-94-007-4881-1_3
  • Piotrowska K, Kaszewski BM. Variations in birch pollen (Betula spp.) seasons in Lublin and correlations with meteorological factors in the period 2001-2010. A preliminary study. Acta Agrobot. 2011;64(2);39-50. http://dx.doi.org/10.5586/aa.2011.016
  • Sofiev M, Berger U, Prank M, Vira J, Arteta J, Belmonte J, et al. MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe. Atmos Chem Phys Discuss. 2015;15:8243-8281. http:// dx.doi.org/10.5194/acpd-15-8243-2015

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8d8a67ea-b070-4286-a350-c32eca8c42ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.