PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 04 |

Tytuł artykułu

Mapping and candidate gene identification defining BnChd1-1, a locus involved in chlorophyll biosynthesis in Brassica napus

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The chlorophyll-deficient mutant (Bnchd1) is a spontaneous mutant of Brassica napus. Compared with the wild type, ‘Qingyou 10’, Bnchd1 exhibits distinct phenotypes, including interveinal yellowing leaves at the seedling stage and light-green leaves at the bolting stage, dwarfism throughout the lifespan, extremely low seed yields and abnormally shaped and early degradation of chloroplasts. Defective chloroplasts significantly reduce the levels of pigment in Bnchd1 at the seedling and bolting stages. Genetic analysis showed that two recessive genes, designated BnChd1-1 and BnChd1-2, are responsible for the light-green phenotype. BnChd1-1 was determined to be a single Mendelian factor in a BC₂F₁ population based on a phenotypic segregation ratio of 1:1. BnChd1-1 was mapped to a region of A01 using a BC₃F₁ population of 394 individuals with 198 green and 196 light-green plants. Within the collinear region in Brassica rapa, six genes that might be involved in chloroplast thylakoid development and NDH dehydrogenase activity were annotated. Among the six candidate genes, reverse transcription-polymerase chain reaction revealed that the mRNA levels of Bra021529 and Bra040517 were undetectable in the mutant and high in Qingyou10 and Westar plants at the seedling stage. Additionally, DNA sequence differences were identified across the gene and promoter region. Protein sequence differences were also observed in Bra040517, while no sequence differences in Bra021529 were observed between Bnchd1 and Qingyou10. Therefore, the homologue of Bra040517 is the most likely candidate gene for BnChd1-1.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

04

Opis fizyczny

p.859-870,fig.,ref.

Twórcy

autor
  • National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
  • College of Plant Science and Technology, Huazhong Agricultural University, 430079 Wuhan, China
autor
  • College of Urban and Environment Science, Central China Normal University, 430079 Wuhan, China
autor
  • National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
autor
  • College of Plant Science and Technology, Huazhong Agricultural University, 430079 Wuhan, China
autor
  • National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
autor
  • National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
autor
  • College of Landscape Architectute, Northeast Forestry University, 26 Hexing Road, 150000 Harbin, Heilongjiang, China
autor
  • National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China

Bibliografia

  • Amin P, Sy DAC, Pilgrim ML, Parry DH, Nussaume L, Hoffman NE (1999) Arabidopsis mutants lacking the 43- and 54-Kilodalton subunits of the chloroplast signal recognition particle have distinct phenotypes. Plant Physiol 121:61–70
  • Asakura Y, Hirohashi T, Kikuchi S, Belcher S, Osborne E, Yano S, Terashima I, Barkan A, Nakai M (2004) Maize mutants lacking chloroplast FtsY exhibit pleiotropic defects in the biogenesis of thylakoid membranes. Plant Cell 16:201–214
  • Bang WY, Jeong IS, Kim DW, Im CH, Ji C, Hwang SM, Kim SW, Son YS, Jeong J, Shiina T, Bahk JD (2008) Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene expression profiling. Plant Cell Physiol 49(9):1350–1363
  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American society of plant physiologists, Rockville
  • Chi YH, Moon JC, Park JH, Kim HS, Zulfugarov IS, Fanata WI, Jang HH, Lee JR, Lee YM, Kim ST, Chung YY, Lim CO, Kim JY, Yun DJ, Lee CH, Lee KO, Lee SY (2008) Abnormal chloroplast development and growth inhibition in rice thioredoxin m knockdown plants. Plant Phys 148:808–817
  • Clark RB (1983) Plant genotype differences in the uptake, translocation, accumulation, and use of mineral elements required for plant growth. Plant Soil 72:175–196
  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15
  • Eckhardt U, Grimm B, Hortensteiner S (2004) Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56:1–14
  • Falbel TG, Staehelin LA (1996) Partial block in the early steps of the chlorophyll synthesis pathway: a common feature of chlorophyll b-deficient mutants. Plant Physiol 97:311–320
  • Falbel TG, Meehl JB, Staehelin A (1996) Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol 112:821–832
  • FAO (2010) FAOSTAT Database. Food and Agriculture Organization of the United Nations, Rome, Available from: http://faostat.fao.org/
  • Foisset N, Delourme R, Barret P, Hubert N, Landry BS, Renard M (1996) Molecular-mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled-haploid progeny. Theor Appl Genet 93:1017–1025
  • Folly P, Engel N (1999) Chlorophyll b to chlorophyll a conversion precedes chlorophyll degradation in Hordeum vulgare L. J Biol Chem 274:21811–21816
  • Fromme P, Melkozernov A, Jordan P, Krauss N (2003) Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS Lett 555:40–44
  • Gohre V, Ossenbuhl F, Crevecoeur M, Eichacker LA, Rochaix JD (2006) One of two alb3 proteins is essential for the assembly of the photosystems and for cell survival in chlamydomonas. Plant Cell 18:1454–1466
  • Havaux M, Tardy F (1997) Thermostability and photostability of photosystem II in leaves of the Chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes. Plant Physiol 113:913–923
  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77
  • Howell EC, Kearsey MJ, Jones GH, King GJ, Armstrong SJ (2008) A and C genome distinction and chromosome identification in B. napus by sequential fluorescence in situ hybridization and genomic in situ hybridization. Genetics 180:1849–1857
  • Hussian D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobett CS (2004) P-type ATPase heavy metal transporter with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339
  • Ito H, Ohtsuka T, Tanaka A (1996) Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. J Biol Chem 271:1475–1479
  • Killough DT, Horlacher WR (1993) The inheritance of virescent yellow and red plant colors in cotton. Genetics 18:329–333
  • Kirst H, García-Cerdán JG, Zurbriggen A, Melis A (2012a) Assembly of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii requires expression of the TLA2-CpFTSY gene. Plant Physiol 158:930–945
  • Kirst H, García-Cerdán JG, Zurbriggen A, Ruehle T, Melis A (2012b) Truncated photosystem chlorophyll antenna size in the green microalgae Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 gene. Plant Physiol 160:2251–2260
  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150:257–271
  • Klimyuk VI, Persello-Cartieaux F, Havaux M, Contard-David P, Schuenemann D, Meiherhoff K, Gouet P, Jones JD, Hoffman NE, Nussaume L (1999) A chromo-domain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell 11:87–99
  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175
  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV–VIS Spectroscopy. In: Wrolstad RE, Acree TE, An H, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Sporns P (eds) Current protocols in food analytical chemistry. Wiley, New York, p F4.3.1–F4.3.8
  • Lin YF, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206
  • Ma JF, Tamai K, Ichii M, Wu GF (2002) A rice mutant defective in Si uptake. Plant Physiol 130:2111–2117
  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:668–691
  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–213
  • Marschner H, Kirkby E, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263
  • Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002) Altered shoot/root/Na⁺ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na⁺ transporter AtHKT1. FEBS Lett 531:157–161
  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280
  • Meyer M (2009) Rapeseed oil fuel–the crisis-proof home-made ecofuel. Agrarforschung 16:262–267
  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832
  • Ooijen JW Van (2006) JoinMap version 4: software for the calculation of genetic linkage maps in experimental populations. Plant Research International B.V. and Kyazma B.V, Wageningen
  • Ort DR, Zhu X, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85
  • Oster U, Tanaka R, Tanaka A, Rudiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305–310
  • Park J, Kim YY, Martinoia E, Lee Y (2008) Long-distance transporters of inorganic nutrients in plants. J Plant Biol 51:240–247
  • Parkin IAP, Sharpe AG, Lydiate DJ (2003) Patterns of genome duplication within the B. napus genome. Genome 46:291–303
  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the B. napus genome based on comparative analysis with A. thaliana. Genetics 171:765–778
  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523
  • Pontier D, Albrieux C, Joyard J, Lagrange T, Block MA (2007) Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis: effects on chloroplast development and on chloroplast-to nucleus signaling. J Biol Chem 282:2297–2304
  • Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP, Hansson M (2005) Xanthal encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc Natl Acad Sci USA 102:5886–5891
  • Saric MR (1981) Genetic specificity in relation to plant mineral nutrition. J Plant Nutr 3:743–766
  • Sundberg E, Slagter JG, Fridborg I, Cleary SP, Robinson C et al (1997) ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant Cell 9:717–730
  • Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE (2003) Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci USA 100:16119–16124
  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312
  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414
  • Wang X, The Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species B. rapa. Nat Genet 43:1035–1039
  • Wang Y, Sun S, Liu B, Wang H, Deng J, Liao Y, Wang Q, Cheng F, Wang X, Wu J (2011) A sequence-based genetic linkage map as a reference for B. rapa pseudochromosome assembly. BMC Genom 12:239
  • Wang Y, Xu H, Kou JJ, Shi L, Zhang CY, Xu FS (2013) Dual effects of transgenic B. napus overexpressing CS gene on tolerances to aluminum toxicity and phosphorus deficiency. Plant Soil 362:231–246
  • Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40
  • Xiao HG, Yang HW, Rao Y, Yang B, Zhu Y (2013) Photosynthetic characteristics and chlorophyll fluorescence kinetic parameters analyses of chlorophyll-reduced mutant in Brassica napus L. Acta Agron Sin 39:520–529
  • Zhao Y, Wang ML, Zhang YZ, Du LF, Pan TA (2000) Chlorophyll-reduced seedling mutant in oilseed rape, B. napus, for utilization in F1 hybrid production. Plant Breed 119:131–135
  • Zhao H, Shi L, Duan XL, Xu FS, Wang YH, Meng JL (2008) Mapping and validation of chromosome regions conferring a new boron-efficient locus in B. napus. Mol Breed 22:495–506

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8d8729f1-d256-40a2-8c70-9969e514acba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.