PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 2 |

Tytuł artykułu

Acyldepsipeptide antibiotics - current state of knowledge

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objective of this paper is to review and summarize the antimicrobial efficacy of the acyldepsipeptides and to indicate the prospects of the therapeutic values of these compounds. This work is enriched by the description of the mutations within the clpP1clpP2 and clpP3clpP4 operons of Streptomyces lividans, which are considered to be the potential mechanism of the acyldepsipeptide (ADEP) – resistance development. The researchers’ conclusions demonstrated a significant impact on microorganisms including the destabilization of bacterial cell division in Bacillus subtilis 168, Staphylococcus aureus HG001 and Streptococcus pneumoniae G9A strains. The results of animal studies show higher bactericidal effectiveness of the acyldepsipeptides ADEP-2 and ADEP-4 compared to linezolid. ADEPs may be considered as a very important mechanism of defense against the increasing resistance of microorganisms . They also might prevent or reduce the risk of many epidemiological events.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

2

Opis fizyczny

p.85-92,ref.

Twórcy

  • CePT Laboratory, Department of Pharmacodynamics, Medical University of Warsaw, Warszawa, Poland
  • CePT Laboratory, Department of Pharmacodynamics, Medical University of Warsaw, Warszawa, Poland

Bibliografia

  • Alexopoulos J.A., A. Guarné and J. Ortega. 2012. ClpP: a structurally dynamic protease regulated by AAA+ proteins. J. Struct. Biol. 179: 202–210.
  • Alexopoulos J., B.Ahsan, L.Homchaudhuri, N.Husain, Y.Q.Cheng and J. Ortega. 2013. Structural determinants stabilizing the axial channel of ClpP for substrate translocation. Molecular Microbiology 90: 167–180.
  • Akopian T., O. Kandror, R. Raju, M. UnniKrishnan, E. Rubin and A. Goldberg. 2012. The active ClpP protease from M. tuberculosis is a complex composed of a heptameric ClpP1 and a ClpP2 ring. EMBO J. 31: 1529−1541.
  • Barreiro E.J., A.E. Kümmerle and C.A. Fraga. 2011. The methylation effect in medicinal chemistry. Chem. Rev. 111: 5215–5246.
  • Beuron F., M.R. Maurizi, D.M. Belnap, E. Kocsis, F.P. Booy, M. Kessel and A.C. Steven. 1998. At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. J. Struct. Biol. 123(3), 248–259.
  • Brötz-Oesterhelt H., D. Beyer, H.P. Kroll, R. Endermann, C. Ladel, W. Schroeder, B. Hinzen, S. Raddatz, H. Paulsen, K. Henninger and others. 2005. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat. Med. 11: 1082–1087.
  • Carney D.W., K.R. Schmitz, J.V. Truong, R.T. Sauer and J.K. Sello. 2014. Restriction of the conformational dynamics of the cyclic acyldepsipeptide antibiotics improves their antibacterial activity. J. Am. Chem. Soc. 136: 1922–1929.
  • Carney D.W., C.L. Compton, K.R. Schmitz, J.P. Stevens, R.T. Sauer and J.K. Sello. 2014. A simple fragment of cyclic acyldepsipeptides is necessary and sufficient for ClpP activation and antibacterial activity. Chembiochem. 10.1002/cbic.201402358.
  • Colca J.R., W.G. McDonald, D.J. Waldon, L.M. Thomasco, R.C. Gadwood, E.T. Lund, G.S. Cavey, W.R. Mathews, L.D. Adams, Cecil E.T. and others. 2003. Cross linking in the living cell locates the site of action of oxazolidinone antibiotics. J. Biol. Chem. 278: 21972–21979.
  • Compton C.L., K.R. Schmitz, R.T. Sauer and J.K. Sello. 2013. Antibacterial activity of and resistance to small molecule inhibitors of the ClpP peptidase. ACS Chem. Biol. 8: 2669–2677.
  • Conlon B.P., E.S. Nakayasu, L.E. Fleck, M.D. LaFleur, V.M. Isabella, K. Coleman, S.N. Leonard, R.D. Smith, J.N. Adkins and K. Lewis. 2013. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503: 365–70.
  • Dougan D.A., B.G. Reid, A.L. Horwich and B. Bukau. 2002. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell. 9: 673–683.
  • Dougan D.A. 2011. Chemical activators of ClpP: turning Jekyll into Hyde. Chem. Biol. 18: 1072–1074.
  • Doyle S.M. and S. Wickner. 2009. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem. Sci. 34: 40–48.
  • Frees D., S.N.A. Qazi, P.J. Hill and H. Ingmer. 2003. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol. Microbiol. 48: 1565−1578.
  • Frees D., K. Sorensen and H. Ingmer. 2005. Global virulence regulation in Staphylococcus aureus: pinpointing the roles of ClpP and ClpX in the sar/agr regulatory network. Infect. Immun. 73: 8100−8108.
  • Gaillot O., E. Pellegrini, S. Bregenholt, S. Nair and P. Berche. 2000. The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Mol. Microbiol. 35: 1286–1294.
  • Gominet M., N. Seghezzi and P. Mazodier. 2011. Acyl depsipeptide (ADEP) resistance in Streptomyces. Microbiology. 157: 2226–2234.
  • Hinzen B., S. Raddatz, H. Paulsen, T. Lampe, A. Schumacher, D. Häbich, V. Hellwig, J. Benet-Buchholz, R. Endermann, H. Labischinski and others. 2006. Medicinal chemistry optimization of acyldepsipeptides of the enopeptin class antibiotics. Chem. Med. Chem. 1: 689–693.
  • Horwich A.L., E.U. Weber-Ban and D. Finley. 1999. Chaperone rings in protein folding and degradation. Proc. Natl. Acad. Sci. USA 96: 11033–11040.
  • Kirstein J., T. Schlothauer, D.A. Dougan, H. Lilie, G. Tischendorf, A. Mogk, B. Bukau and K. Turgay. 2006. Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. EMBO J. 25: 1481–1491.
  • Kirstein J., H. Strahl, N. Moliere, L.W. Hamoen and K. Turgay. 2008. Localization of general and regulatory proteolysis in Bacillus subtilis cells. Mol. Microbiol. 70: 682–694.
  • Kirstein J., A. Hoffmann, H. Lilie, R. Schmidt, H. Rübsamen-Waigmann, H. Brötz-Oesterhelt, A. Mogk and K. Turgay. 2009. The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol. Med. 1: 37–49.
  • Koshino H., H. Osada, T. Yano, J. Uzawa and K. Isono. 1991. The structure of enopeptins A and B, novel depsipeptide antibiotics. Tetrahedron Lett. 32: 7707–7710.
  • Kwon H., S. Kim, M. Choi, A.D. Ogunniyi, J.C. Paton, S. Park, S. Pyo and D. Rhee. 2003. Effect of heat shock and mutations in ClpL and ClpP on virulence gene expression in Streptococcus pneumoniae. Infect. Immun. 71: 3757−3765.
  • Kwon H., A.D. Ogunniyi, M. Choi, S. Pyo, D. Rhee and J.C. Paton. 2004. The ClpP protease of Streptococcus pneumoniae modulates virulence gene expression and protects against fatal pneumococcal challenge. Infect. Immun. 72: 5646−5653.
  • Lan G., B.R. Daniels, T.M. Dobrowsky, D. Wirtz and S.X. Sun. 2009. Condensation of FtsZ filaments can drive bacterial cell division. Proc. Natl. Acad. Sci. U.S.A. 106: 121–126.
  • Lee B.G., E.Y. Park, K.E. Lee, H. Jeon, K.H. Sung, H. Paulsen, H. Rübsamen-Schaeff, H. Brötz-Oesterhelt and H.K. Song. 2010. Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat. Struct. Mol. Biol. 17: 471–478.
  • Leung C.S., S.S. Leung, J. Tirado-Rives and W.L. Jorgensen. 2012. Methyl effects on protein-ligand binding. J. Med. Chem. 55: 4489–4500.
  • Li D.H., Y.S. Chung, M. Gloyd, E. Joseph, R. Ghirlando, G.D. Wright, Y.Q. Cheng, M.R. Maurizi, A. Guarné and J. Ortega. 2010. Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP. Chem. Biol. 17: 959–969.
  • Lowth B.R., J. Kirsten-Miles, T. Saiyed, H. Brötz-Oesterhelt, R.I. Morimoto, K.N. Truscott and D.A. Dougan. 2012. Substrate recognition and processing by a Walker B mutant of the human mitochondrial AAA+ protein CLPX. J. Struct. Biol. 179: 193–201.
  • Lupas A., J.M. Flanagan, T. Tamura and W. Baumeister. 1997. Selfcompartmentalizing proteases. Trends Biochem. Sci. 22: 399–404.
  • Marsault E. and M.L. Peterson. 2011. Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J. Med. Chem. 54: 1961–2004.
  • Morell E.A. and D.M. Balkin. 2010. Methicillin-resistant Staphylococcus aureus: a pervasive pathogen highlights the need for new antimicrobial development. Yale J. Biol. Med. 83: 223–233.
  • Ollinger J., T. O’Malley, E.A. Kesicki, J. Odingo and T. Parish. 2012. Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target. J. Bacteriol. 194: 663–668.
  • Ortega J., S.K. Singh, T. Ishikawa, M.R. Maurizi and A.C. Steven. 2000. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol. Cell. 6: 1515–1521.
  • Osada H., T. Yano, H. Koshino and K. Isono. 1991. Enopeptin A, a novel depsipeptide antibiotic with anti-bacteriophage activity. J. Antibiot. 44: 1463–1466.
  • Raju R.M., A.L. Goldberg and E.J. Rubin. 2012. Bacterial proteolytic complexes as therapeutic targets. Nat. Rev. Drug Discov. 11: 777−789.
  • Raju R., M. Ennikrishnan, D. Rubin, V. Krishnamoorthy, O. Kandror, T. Akopian, A. Goldberg and E. Rubin. 2012. Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathog. 8: e1002511.
  • Roberts D.M., Y. Personne, J. Ollinger and T. Parish. 2013. Proteases in Mycobacterium tuberculosis pathogenesis: potential as drug targets. Future Microbiol. 8: 621−631.
  • Robertson G.T., W. Ng, J. Foley, R. Gilmour and M.E. Winkler. 2002. Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J. Bacteriol. 184: 3508−3520.
  • Sass P., M. Josten, K. Famulla, G. Schiffer, H.G. Sahl, L. Hamoen and H. Brötz-Oesterhelt. 2011. Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc. Natl. Acad. Sci. USA 108: 17474–17479.
  • Sauer R.T., D.N. Bolon, B.M. Burton, R.E. Burton, J.M. Flynn, R.A. Grant, G.L. Hersch, S.A. Joshi, J.A. Kenniston, I. Levchenko and others. 2004. Sculpting the proteome with AAA+. proteases and disassembly machines. Cell. 119: 9–18.
  • Schiefer A., J. Vollmer, C. Lämmer, S. Specht, C. Lentz, H. Ruebsamen-Schaeff, H. Brötz-Oesterhelt, A. Hoerauf and K. Pfarr. 2013. The ClpP peptidase of Wolbachia endobacteria is a novel target for drug development against filarial infections. J. Antimicrob. Chemother. 68: 1790–1800.
  • Socha A.M., N.Y. Tan, K.L. LaPlante, J.K. Sello. 2010. Diversity-oriented synthesis of cyclic acyldepsipeptides leads to the discovery of a potent antibacterial agent. Bioorg. Med. Chem. 18: 7193–7202.
  • Sowole M.A., J.A. Alexopoulos, Y.Q. Cheng, J. Ortega and L. Konermann. 2013. Activation of ClpP protease by ADEP antibiotics: insights from hydrogen exchange mass spectrometry. J. Mol. Biol. 425: 4508–4519.
  • Szyk A. and M.R. Maurizi. 2006. Crystal structure at 1.9Å of E.coli ClpP with a peptide covalently bound at the active site. J. Struct. Biol. 156: 165–174.
  • Thompson M.W., S.K. Singh and M.R. Maurizi. 1994. Processive degradation of proteins by the ATP-dependent Clp protease from Escherichia coli. Requirement for the multiple array of active sites in ClpP but not ATP hydrolysis. J. Biol. Chem. 269: 18209–18215.
  • Truscott K.N., A. Bezawork-Geleta and D.A. Dougan. 2011. Unfolded protein responses in bacteria and mitochondria: a central role for the ClpXP machine. IUBMB Life. 63: 955–963.
  • Wickner S., M.R. Maurizi and S. Gottesman. 1999. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286: 1888–1893.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8c9f44d1-8b49-4e0e-bf61-4d36d0abfb5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.