PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 1 |

Tytuł artykułu

Diversity of antibiotic resistance among bacteria Isolated from sediments and water of carp farms located in a Polish nature reserve

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present study collected bacterial samples from water and bottom sediments from fish farms located in a nature reserve area in Poland with no recorded history of antibiotic use. The aim of the study was to determine the initial states of tetracycline, streptomycin, and erythromycin resistance before a potential increase of intensive aquaculture and application of antimicrobial agents in that region. With this in mind, the diversity and antibiotic resistance phenotypes and genotypes of isolates from the bottom sediments and water in five of the 13 fish ponds in Raszyn were evaluated. A total of 58 (sediment, n = 24; water, n = 34) non-repetitive and non-susceptible isolates were affiliated to 14 genera. Among the sediment isolates, Pseudomonas spp. and Bacillus spp. were isolated most frequently, and from the water, Stenotrophomonas spp. and Pseudomonas spp. Phenotypically resistant isolates selected by disk diffusion were further screened by polymerase chain reaction (PCR) and amplicon sequencing. The isolates derived from the water showed a greater percentage of phenotypically resistant isolates to each of the three antibiotics. The most common tetracycline resistant genes detected in isolates from both the water and sediment were tet(A), tet(T), tet(W), and tet(34). On the other hand, the genes tet(X), tet(H), tet(M), and tet(BP) were the most frequent among sedimentary isolates, while tet(B), tet(C), tet(D), and tet(32) were prevalent in aquatic isolates. The most prevalent streptomycin resistance genes among the aquatic isolates were aac(6’)-I, str(A), and str(B). The erythromycin resistance genes detected in all isolates included msr(A), erm(X), erm(V), erm(F), and erm(E).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

1

Opis fizyczny

p.239-252,fig.,ref.

Twórcy

  • Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
autor
  • Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
autor
  • Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
autor
  • Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland

Bibliografia

  • 1. BOSTOCK J., MCANDREW B., RICHARDS R., JAUNCEY K., TELFER T., LORENZEN K., LITTLE D., ROSS L., HANDISYDE N., GATWARD I., CORNER R. Aquaculture: global status and trends. Philos Trans R Soc Lond B Biol Sci. 365, 2897, 2010.
  • 2. KÜMMERER K. Antibiotics in the aquatic environment – a review – part I. Chemosphere. 75, 417, 2009.
  • 3. KÜMMERER K. Antibiotics in the aquatic environment – a review – part II. Chemosphere. 75, 435, 2009.
  • 4. SERRANO P.H. Responsible use of antibiotics in aquaculture. Food & Agriculture Org. 2005.
  • 5. ZHANG X.-X., ZHANG T., FANG H.H. Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol. 82, 397, 2009.
  • 6. BAQUERO F., MARTÍNEZ J.-L., CANTÓN R. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol. 19, 260, 2008.
  • 7. PIOTROWSKA M., POPOWSKA M. The prevalence of antibiotic resistance genes among Aeromonas species in aquatic environments. Ann Microbiol. 64, 921, 2014.
  • 8. PIOTROWSKA M., POPOWSKA M. Insight into the mobilome of Aeromonas strains. Front Microbiol. 6, 494, 2015.
  • 9. KEMPER N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic. 8, 1, 2008.
  • 10. BÉRDY J. Bioactive microbial metabolites. J Antibiot (Tokyo). 58, 1, 2005.
  • 11. DE LIMA PROCÓPIO R.E., DA SILVA I.R., MARTINS M.K., DE AZEVEDO J.L., DE ARAÚJO J.M. Antibiotics produced by Streptomyces. Braz J Infect Dis. 16, 466, 2 012.
  • 12. PELAEZ F. The historical delivery of antibiotics from microbial natural products – can history repeat? Biochem Pharmacol. 71, 981, 2006.
  • 13. GEBREYOHANNES G., MOGES F., SAHILE S., RAJA N. Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Asian Pac J Trop Biomed. 3, 426, 2013.
  • 14. VALLI S., SUVATHI S.S., AYSHA O.S., NIRMALA P., VINOTH K.P., REENA A. Antimicrobial potential of Actinomycetes species isolated from marine environment. Asian Pac J Trop Biomed. 2, 469, 2012.
  • 15. BARTON M.D. Impact of antibiotic use in the swine industry. Curr Opin Microbiol. 19, 9, 2014.
  • 16. JI X., SHEN Q., LIU F., MA J., XU G., WANG Y., WU M. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J Hazard Mater. 235, 178, 2012.
  • 17. LU X.-M., LU P.-Z. Diversity, abundance, and spatial distribution of riverine microbial communities response to effluents from swine farm versus farmhouse restaurant. Appl Microbiol Biotechnol. 98, 7597, 2014.
  • 18. KÜMMERER K. Resistance in the environment. J Antimicrob Chemother. 54, 311, 2004.
  • 19. KWON J.-W. Mobility of veterinary drugs in soil with application of manure compost. Bull Environ Contam Toxicol. 87, 40, 2011.
  • 20. THIELE-BRUHN S. Pharmaceutical antibiotic compounds in soils – a review. J Plant Nutr Soil Sci. 166, 145, 2003.
  • 21. GOH E.-B., YIM G., TSUI W., MCCLURE J., SURETTE M.G., DAVIES J. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci. 99, 17025, 2002.
  • 22. LAURETI L., MATIC I., GUTIERREZ A. Bacterial responses and genome instability induced by subinhibitory concentrations of antibiotics. Antibiotics. 2, 100, 2013.
  • 23. LÓPEZ E., BLÁZQUEZ J. Effect of subinhibitory concentrations of antibiotics on intrachromosomal homologous recombination in Escherichia coli. Antimicrob Agents Chemother. 53, 3411, 2009.
  • 24. OZ T., GUVENEK A., YILDIZ S., KARABOGA E., TAMER Y.T., MUMCUYAN N., OZAN V.B., SENTURK G.H., COKOL M., YEH P., TOPRAK E. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. Mol Biol Evol. msu 191, 2014.
  • 25. ANDERSSON D.I., HUGHES D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 12, 465, 2014.
  • 26. MARTINEZ J.L., FAJARDO A., GARMENDIA L., HERNANDEZ A., LINARES J.F., MARTÍNEZ-SOLANO L., SÁNCHEZ M.B. A global view of antibiotic resistance. FEMS Microbiol Rev. 33, 44, 2009.
  • 27. ALLEN H.K., DONATO J., WANG H.H., CLOUD-HANSEN K.A., DAVIES J., HANDELSMAN J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 8, 251, 2010.
  • 28. MARTINEZ J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut. 157, 2893, 2009.
  • 29. MARTÍNEZ J.L., COQUE T.M., BAQUERO F. What is a resistance gene? Ranking risk in resistomes. Nat. Rev. Microbiol. 2014.
  • 30. SALYERS A.A., AMABILE-CUEVAS C.F. Why are antibiotic resistance genes so resistant to elimination? Antimicrob Agents Chemother. 41, 2321, 1997.
  • 31. DING C., HE J. Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol. 87, 925, 2010.
  • 32. POPOWSKA M., MIERNIK A., RZECZYCKA M., LOPACIUK A. The impact of environmental contamination with antibiotics on levels of resistance in soil bacteria. J Environ Qual. 39, 1679, 2010.
  • 33. ZHANG L., LI X.-Z., POOLE K. Multiple antibiotic resistance in Stenotrophomonas maltophilia: involvement of a multidrug efflux system. Antimicrob Agents Chemother. 44, 287, 2000.
  • 34. BARSZCZEWSKI J., KACA E., WOJDA R., The environmental conditions and production results in organic and conventional system of carp breeding. J Res Appl Agric Eng. 55, 14, 2010.
  • 35. MCCRADY M.H. The numerical interpretation of fermentation-tube results. J Infect Dis. 183, 1915.
  • 36. LANE D.J. 16S/23S rRNA sequencing. Nucleic Acid Tech Bact Syst. 125, 1991.
  • 37. PATTERSON A.J., COLANGELI R., SPIGAGLIA P., SCOTT K.P. Distribution of specific tetracycline and erythromycin resistance genes in environmental samples assessed by macroarray detection. Environ Microbiol. 9, 703, 2007.
  • 38. CHELOSSI E., VEZZULLI L., MILANO A., BRANZONI M., FABIANO M., RICCARDI G., BANAT I.M. Antibiotic resistance of benthic bacteria in fish-farm and control sediments of the Western Mediterranean. Aquaculture. 219, 83, 2003.
  • 39. KAWAHARA N., SHIGEMATSU K., MIYADAI T., KONDO R. Comparison of bacterial communities in fish farm sediments along an organic enrichment gradient. Aquaculture. 287, 107, 2009.
  • 40. DEMING J.W., BAROSS J.A. The Early Diagenesis of Organic Matter: Bacterial Activity. In: Engel MH, Macko SA (eds) Org. Geochem. Springer US, pp 119–144 1993.
  • 41. DEVARAJA T.N., YUSOFF F.M., SHARIFF M. Changes in bacterial populations and shrimp production in ponds treated with commercial microbial products. Aquaculture. 206, 245, 2002.
  • 42. BRENNER D.J., KRIEG N.R., STALEY J.T. The Gamma-proteobacteria. Bergey’s Manual of Systematic Bacteriology. New York: Springer 2005.
  • 43. BRENNER D.J., KRIEG N.R., STALEY J.T. Bergey’s Manual of Systematic Bacteriology. Vol. Two, Part C, The Alpha-,Beta-, Delta-, and Epsilonproteobacteria. New York: Springer 2005.
  • 44. GAO P., MAO D., LUO Y., WANG L., XU B., XU L. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res. 46, 2355, 2012.
  • 45. TAMMINEN M., KARKMAN A., LÕHMUS A., MUZIASARI W.I., TAKASU H., WADA S., SUZUKI S., VIRTA M. Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure. Environ Sci Technol. 45, 386, 2010.
  • 46. SEYFRIED E.E., NEWTON R.J., RUBERT IV K.F., PEDERSEN J.A., MCMAHON K.D. Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline. Microb Ecol. 59, 799, 2010.
  • 47. SHAH S.Q., COLQUHOUN D.J., NIKULI H.L., SØRUM H. Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania. Environ Sci Technol. 46, 8672, 2012.
  • 48. AKINBOWALE O.L., PENG H., BARTON M.D. Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. J Appl Microbiol. 100, 1103, 2006.
  • 49. SU H.-C., YING G.-G., TAO R., ZHANG R.-Q., FOGARTY L.R., KOLPIN D.W. Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in south China. J Environ Monit. 13, 3229, 2011.
  • 50. BAKER-AUSTIN C., WRIGHT M.S., STEPANAUSKAS R., MCARTHUR J.V. Co-selection of antibiotic and metal resistance. Trends Microbiol. 14, 176, 2006.
  • 51. SEILER C., BERENDONK T.U. Heavy metal driven coselection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 3: 2012.
  • 52. BAQUERO F., ALVAREZ-ORTEGA C., MARTINEZ J.L. Ecology and evolution of antibiotic resistance. Environ Microbiol Rep. 1, 469, 2009.
  • 53. MOHAPATRA H., MOHAPATRA S.S., MANTRI C.K., COLWELL R.R., SINGH D.V. Vibrio cholerae non-O1, non-O139 strains isolated before 1992 from Varanasi, India are multiple drug resistant, contain intSXT, dfr18 and aadA5 genes. Environ Microbiol. 10, 866, 2008.
  • 54. ALONSO A., MARTÍNEZ J.L. Multiple antibiotic resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 41, 1140, 1997.
  • 55. AMINOV R.I. The role of antibiotics and antibiotic resistance in nature. Environ Microbiol. 11, 2970, 2009.
  • 56. LAMBERT T., PLOY M.-C., DENIS F., COURVALIN P. Characterization of the Chromosomalaac (6′)-Iz Gene of Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 43, 2366, 1999.
  • 57. AMINOV R.I., CHEE-SANFORD J.C., GARRIGUES N., TEFEREDEGNE B., KRAPAC I.J., WHITE B.A., MACKIE R.I. Development, validation, and application of PCR primers for detection of tetracycline efflux genes of gramnegative bacteria. Appl Environ Microbiol. 68, 1786, 2002.
  • 58. CHEE-SANFORD J.C., AMINOV R.I., KRAPAC I.J., GARRIGUES-JEANJEAN N., MACKIE R.I. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol. 67, 1494, 2001.
  • 59. LEE Y.J., HAN H.S., SEONG C.N., LEE H.Y., JUNG J.S. Distribution of genes coding for aminoglycoside acetyltransferases in gentamicin resistant bacteria isolated from aquatic environment. J Microbiol. 36, 249, 1998.
  • 60. CANTAS L., SHAH S.Q.A., CAVACO L.M., MANAIA C.M., WALSH F., POPOWSKA M., GARELICK H., BÜRGMANN H., SØRUM H. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol. 4, 96, 2013.
  • 61. PEREIRA A., SANTOS A., TACÃO M., ALVES A., HENRIQUES I., CORREIA A. Genetic diversity and antimicrobial resistance of Escherichia coli from Tagus estuary (Portugal). Sci Total Environ. 461, 65, 2013.
  • 62. ROBERTS M.C. Mechanisms of bacterial antibiotic resistance and lessons learned from environmental tetracycline resistant bacteria. John Wiley & Sons, Inc., Hoboken, New Jersey 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8c31fba3-c467-44d4-9c39-5aed6c4fafa0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.