PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 2 |

Tytuł artykułu

Global transcriptome changes of biofilm-forming Staphylococcus epidermidis responding to total alkaloids of Sophorea alopecuroides

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Transcriptome changes of biofilm-forming Staphylococcus epidermidis response to total alkaloids of Sophorea alopecuroides was observed. Bioinformatic analyses were further used to compare the differential gene expression between control and the treated samples. It was found that 282 genes were differentially expressed, with 92 up-regulated and 190 down-regulated. These involved down-regulation of the sulfur metabolism pathway. It was suggested that inhibitory effects on Staphylococcus epidermidis and its biofilm formation of the total alkaloids of S. alopecuroides was mainly due to the regulation of the sulfur metabolism pathways of S. epidermidis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

2

Opis fizyczny

p.223-226,fig.,ref.

Twórcy

autor
  • Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia, China
autor
  • Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia, China
autor
  • Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia, China
autor
  • Department of College of Life Science, Ningxia University, Yinchuan, Ningxia, China

Bibliografia

  • Bloemendaal A.L., E.C. Brouwer and A.C. Fluit. 2010. Methicillin resistance transfer from Staphylocccus epidermidis to methicillin-susceptible Staphylococcus aureus in a patient during antibiotic therapy. PloS One 5(7): e11841.
  • Cerca N., S. Martins, F. Cerca, K.K. Jefferson, G.B. Pier,R. Oliveira and J. Azeredo. 2005. Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry. J. Antimicrob. Chemother. 56(2): 331–336.
  • Gales G., M. Penninckx, J.C. Block and P. Leroy. 2008. Role ofglutathione metabolism status in the definition of some cellular parameters and oxidative stress tolerance of Saccharomyces cerevisiae cells growing as biofilms. FEMS Yeast Res. 8(5): 667–675.
  • Guan Y., C. Li, J.J. Shi, H.N. Zhou, L. Liu, Y. Wang and Y.P. Pu. 2013. Effect of combination of sub-MIC sodium houttuyfonate and erythromycin on biofilm of Staphylococcus epidermidis. Zhongguo Zhong Yao Za Zhi 38(5): 731–735.
  • Klare W., T. Das, A. Ibugo, E. Buckle, M. Manefield and J. Manos. 2016. Glutathione-disrupted biofilms of clinical pseudomonas aeruginosa strains exhibit an enhanced antibiotic effect and a novel biofilm transcriptome. Antimicrob. Agents Ch. 60(8): 4539–4551.
  • Livak K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4): 402–408.
  • Li D., Y. Wang, B. Dai, X. Li, L. Zhao, Y. Cao, L. Yan and Y. Jiang. 2013. ECM17-dependent methionine/cysteine biosynthesis contributes to biofilm formation in Candida albicans. Fungal Genet. Biol. 51: 50–59.
  • Li X., C.P. Guan, Y.L. He, Y.J. Wang, X.M. Liu and X.Z. Zhou. 2016. Effects of total alkaloids of Sophorea Alopecuroides on biofilm formation in Staphylococcus epidermidis. Biomed. Res. Int. 2016: 4020715.
  • Love M.I., W. Huber and S. Anders. 2014. Moderate destimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550.
  • Murillo L.A., G. Newport, C. Lan, S. Habelitz, J. Dungan and N.M. Agabian. 2005. Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot. Cell 4(9): 1562–1573.
  • Ooi X.J. and K.S. Tan. 2016. Reduced glutathione mediates resistance to H2S toxicity in oral Streptococci. Appl. Environ. Microb. 82(7): 2078–2085.
  • Otto M. 2013. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: Staphylococcal commensal species such as Staphylococcus epidermidis are being recognized as important sources of genes promoting MRSA colonization and virulence. Bioessays 35(1): 4–11.
  • Solis N., J.A. Cain and S.J. Cordwell. 2016. Comparative analysis of Staphylococcus epidermidis strains utilizing quantitative and cell surface shaving proteomics. J. Proteomics 130: 190–199.
  • Soutourina O., O. Poupel, J.Y. Coppée, A. Danchin, T. Msadek and I. Martin-Verstraete. 2009. CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation. Mol. Microbiol. 73(2): 194–211.
  • Wang T., G. Shi, J. Shao, D. Wu, Y. Yan, M. Zhang, Y. Cui and C. Wang. 2015. In vitro antifungal activity of baicalin against Candida albicans biofilms via apoptotic induction. Microb. Pathog. 87: 21–29.
  • Yang Y., B.I. Park, E.H. Hwang and Y.O. You. 2016. Composition analysis and inhibitory effect of Sterculia lychnophora against biofilm formation by Streptococcus mutans. Evid. Based Complement Alternat. Med. 2016: 8163150.
  • Zeng L.R., T.Y. Shi, Q.J. Zhao and J.P. Xie. 2013. Mycobacterium sulfur metabolism and implications for novel drug targets. Cell Biochem. Biophys. 65(2): 77–83.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8c2e1336-19a7-4975-9333-4a2e30474a5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.