PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 30 | 4 |

Tytuł artykułu

Increasing in vitro microrhizome production of ginger (Zingiber officinale Roscoe)

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study, using the quadratic saturation 310 D-optimal design method, we examined the effect of kinetin (KT), gibberellic acid (GA), and naphthalene acetic acid (NAA) on microrhizome production in ginger. The effect of GA on rhizome induction was larger than that of KT or NAA. Using simulation and optimality selection for tissue culture, we found that concentrations of GA, KT, and NAA of 1.33–2.35, 0.49–0.66, and 0.62 g/l, respectively, gave a microrhizome weight of over 0.25 g. The optimal conditions for microrhizome production were 80 g/l sucrose, 2 9 MS macro-elements, and 1 9 MS microelements, with a photoperiod of 24L:0D (light/dark). At the same time, 100% survival could be achieved on transfer of the in vitro ginger plantlets with microrhizomes to soil.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

30

Numer

4

Opis fizyczny

p.513-519,fig.,ref.

Twórcy

autor
  • College of Horticulture and Engineering, Shandong Agricultural University, 271018 Taian, People's Republic of China
  • Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, 100039 Beijing, People's Republic of China
  • The Graduate School of Chinese Academy of Sciences, 100039 Beijing, People's Republic of China
autor
  • College of Horticulture and Engineering, Shandong Agricultural University, 271018 Taian, People's Republic of China
  • Weifang Science and Technology Vocational College, 262700 Taian, People's Republic of China
autor
  • Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, 100039 Beijing, People's Republic of China
autor
  • College of Horticulture and Engineering, Shandong Agricultural University, 271018 Taian, People's Republic of China

Bibliografia

  • Babu KN, Samsudeen K, Ravindran PN (1992) Direct regeneration of plantlets from immature inflorescences of ginger (Zingiber officinale Rosc.) by tissue culture. J Spices Aromat Crops 1:43–48
  • Borrelli F, Capasso R, Aviello G, Pittler MH, Izzo AA (2005) Effectiveness and safety of ginger in the treatment of pregnancyinduced nausea and vomiting. Obstet Gynecol 105:849–856
  • Chaiyakunapruk N, Kitikannakorn N, Nathisuwan S, Leeprakobboon K, Leelasettagool C (2006) The efficacy of ginger for the prevention of postoperative nausea and vomiting: a metaanalysis. Am J Obstet Gynecol 194:95–99
  • Chen FQ, Fu Y, Wang DL, Gao X, Wang L (2007) The effect of plant growth regulators and sucrose on the micropropagation and microtuberization of Dioscorea nipponica Makino. J Plant Grow Regul 26:38–45
  • De Lange JH, Willers P, Nel MI (1987) Elimination of nematodes from ginger (Zingiber officinale Rosc.) by tissue culture. J Hortic Sci 62:249–252
  • Dekker AJ, Rao AN, Gob CJ (1991) In vitro storage of multiple shoot cultures of ginger at ambient temperatures of 24–29 C. Sci Hort 47:157–167
  • Geetha SP, Babu KN, Rema J (2000) Isolation of protoplasts from cardamom (Elettaria cardamomum Maton.) and ginger (Zingiber officinale Rosc.). J Spices Aromat Crops 9:23–30
  • Grontved A, Brask T, Kambskard J, Hentzer E (1988) Ginger root against seasickness: A controlled trial on the open sea. Acta Otolaryngol 105:45–49
  • Hosoki T, Sagawa Y (1977) Clonal propagation of ginger (Zingiber officinale Rosc.) through tissue culture. HortScience 12:451–452
  • Kackar A, Bhat SR, Chandel KPS, Malik SK (1993) Plant regeneration via somatic embryogenesis in ginger. Plant Cell Tissue Org Cult 32:289–292
  • Li CX, Xie Z (2002) Effect of methyl jasmonate on bulb expansion and endogenous plant hormones in Allium statium L. Life Sci Res 2:183–185
  • Li G, Majumdar D (2007) D-optimal designs for logistic models with three and four parameters. J Stat Plan Infer. doi:10.1016/j.jspi.2007.07.010 (in press)
  • Lu ZX (1981) Effect of types and concentrations of carbon sources on calli growth. Plant Physiol Comm 6:1–5
  • Mowrey DB, Clayson DE (1982) Motion sickness, ginger, and psychophysics. Lancet 1:655–657
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497
  • Ni DX, Deng ZX (1992) The regulation of phytohormones (plant hormones) in gene expression. Plant Physiol Comm 28:462
  • Pan RZ (2001) Phytophysiology 4th edn. Higher Education Press, Beijing, China, pp 176–186
  • Sedigeh A, Mantell SH, Viana AM (1998) In vitro shoot culture and microtuber induction in the steroid yam Dioscorea composite Hemsl. Plant Cell Tiss Org Cult 53:107–112
  • Sharma TR, Singh BM (1997) High-frequency in vitro multiplication of disease-free Zingiber officinale Roscae. Plant Cell Rep 17:68–72
  • Song RM (1985) Biochemical and genetic study on somatic embryogenesis. Overseas Genet Breed 1:31
  • Stewart JJ, Wood MJ, Wood CD, Mims ME (1991) Effects of ginger on motion sickness susceptibility and gastric function. Pharmacology 42:111–120
  • Uozumi M, Asamo Y, Kobayashi TK (1994) Micropropagation of horseradish hairy root by means of adventitious shoot primordia. Plant Cell Tissue Org Cult 36:183–190
  • Wood CD, Manno JE, Wood MJ, Manno BR, Mims ME (1988) Comparison of efficacy of ginger with various antimotion sickness drugs. Clin Res Pr Drug Regul Aff 6:129–136
  • Zhao DW (2002) High Quality and Production of Ginger—theory and technology. China Agricultural Publishing Company, Beijing, pp 10–30
  • Zheng YQ, Liu YM, Xu K (2004) Efects of sucrose concentration on growth and endohormone concentration variations of tubeginger. China Veget 2:15–17

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8c272245-dc55-4f48-825f-f9b590c5433c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.