PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 2 |

Tytuł artykułu

Multivariate statistical analysis of hydrochemical data for shallow ground water quality factor identification in a coastal aquifer

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Multivariate statistical techniques, hierarchical cluster analysis (HCA), and principal component analysis (PCA) integrating graphical method (Piper trilinear graphical diagram) were applied to the factor identification of ground water quality in a coastal aquifer, Fujian province, South China. Ground water samples were collected at 12 sites in January (dry season) and July 2011 (wet season). Eleven ground water quality parameters (pH, TH, TDS, Ca²⁺, Mg²⁺, Na⁺ , Cl⁻, SO₄²⁻, HCO₃⁻, NO₃⁻, Mn) were selected in order to perform multivariate statistical analysis. During both the past-monsoon and the summer seasons, PCA results revealed the existence of three significant principal components revealing how processes like salinization, water-rock interaction, and anthropogenic pollution influence ground water quality. Three factors which together explain 90.3% and 83.3% of the total variance in the summer and post-monsoon dataset were retained and interpreted. Cluster analysis using the Ward method with squared Euclidean distance measure was performed, which indicated the distribution of the studied wells according to their water quality. Water samples from 12 wells were clustered into three distinct groups to depict different hydrochemical facies. The results proved that multivariate analysis methods like HCA and PCA could be useful for evaluating ground water pollution and identifying ground water hydrochemistry.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

2

Opis fizyczny

p.769-776,fig.,ref.

Twórcy

autor
  • Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, P. R. China
autor
  • Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, P. R. China
autor
  • Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, P. R. China
autor
  • Monitoring Center of Geological Environment, Fujian, 350001, P. R. China
autor
  • Escuela de Ingenieros de Caminos, Universidad de A Coruna, Campus de Elvina, 15192, Spain

Bibliografia

  • 1. KIM J. H., KIM R. H., LEE J., CHEONG T. J., YUM B. W., CHANG N. W. Multivariate statistical analysis to identify the major factors governing ground water quality in the coastal area of Kimje, South Korea. Hydrological Processes. 19, (6), 1261, 2005.
  • 2. LU X.R., ZHOU A.G., WANG M.T., YANG L., LU H. Characteristic analysis of phreatic water equality evolution by Piper diagram in Huaihe drainage area, Jiangsu province. Geotechnical Investigation & Surveying. 2, 42, 2010.
  • 3. WANG X.X., WANG W.K., WANG A.F., ZHAO J.L., XIE H.L., WANG X.D. Hydrochemical characteristics and formation mechanism of river water and groundwater along the downstream Luanhe River, northeastern China. Hydrogeology & Engineering Geology. 41, (1), 25, 2014.
  • 4. BONANSEA M., LEDESMA C., RODRIGUEA C., PINOTTI L. Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, Argentina. Hydrology Research, in press, 2014.
  • 5. PAOPATHEODOROU G., LAMBRAKIS N., PANAGOPOULOS G. Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: an example from Crete, Greece. Hydrol. Process. 21, 1482, 2007.
  • 6. BELKHIRI L., BOUDOUKHA A., MOUNI L., BAOUZ T. Multivariate statistical characterization of groundwater quality in Ain Azel plain, Algeria. African Journal of Environmental Science and Technology. 4, (8), 526, 2010.
  • 7. RAO Y. R. S., KESHARI A. K., GOSAIN A. K. Evaluation of regional groundwater quality using PCA and geostitistics in the urban coastal aquifer, East Coast of India. International Journal of Environment and Waste Management. 5, (1-2), 163, 2010.
  • 8. RAO N.S. Spatial control of groundwater contamination, using principal component analysis. Journal of Earth System Science. 123, (4), 715, 2014.
  • 9. HAMILTON L.C. Regression with graphics: A second course in applied statistics (Vol. 1, No. 1). Belmont, CA: Duxbury Press, 1992.
  • 10. LIU C.W., LIN K.H., KUO Y.M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 313, 77, 2003.
  • 11. MANIKANDAN K., KANNAN P., SANKAR M. Evaluation and Management of Groundwater in Coastal Regions, Earth Science India, 5, (I), 1, 2012.
  • 12. ABDI H. Coefficient of variation. Encyclopedia of Research Design. SAGE Publications, Inc., Thousand Oaks, CA, 169, 2010.
  • 13. MOHAPATRA P.K., VIJAY R., PUJARI P.R., SUNDARAY S.K., MOHANYT B.P. Determination of processes affecting groundwater quality in the coastal aquifer beneath Puri city, India: a multivariate statistical approach. Water Sci. Technol. 64, (4), 809, 2011.
  • 14. VENKATESH U., VIVEKANAND H., HERANDEZ E.A. Assessment of groundwater water quality in central and southern Gulf Coast aquifer, TX using principal component analysis. Environ Earth Sci., 2013. DOI: 10.1007/s12665-013-2896-8.
  • 15. HUSSAIN M., AHMED S.M., ABDERRAHMAN W. Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia. J. Environ. Manage. 86, (1), 297, 2008.
  • 16. REGHUNATH R., MURTHY T. R., RAGHAVAN B.R. The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka. Water Res. 36, (10), 2437, 2002.
  • 17. PANDA U.C., SUNDARAY S. K., RATH P., NAYAK B.B., BHATTA D. Application of factor and cluster analysis for characterization of river and estuarine water systems – A case study: Mahanadi River (India). J. Hydrol. 331, (3), 434, 2006.
  • 18. TINA H., NIELS O.J., BRUCE B.Y. Investigation of hydrochemical characteristics of groundwater from the Cretaceous-Eocene limestone aquifer in southern Ghana and southern Togo using hierarchical cluster analysis. Hydrogeol. J. 15, 977, 2007.
  • 19. GOLZAR H., SEILIM R., LUTFUN-NESSA., SAMSUDDIN A. Factor and Cluster Analysis of Water Quality Data of the Groundwater Wells of Kushtia, Bangladesh: Implication for Arsenic Enrchment and Mobilizaion. Journal Geological Society of India. 8, 377, 2013.
  • 20. JOSHUA O.O., ELISAMA U.T., YINUSA A.A. Application of Sequential Analysis and Geographic Information Systems for Hydrochemical Evolution Survey, Shagari Environ, Southwestern Nigeria. American International Journal of Contemporary Research. 3, (3), 38, 2013.
  • 21. Rockware. Inc, Aq.QA© and Prairie City Computing©, Golden, Colorado, USA. Electronic version are available at www.rockware.com.
  • 22. FREEZE R. A., CHERRY J. A. Groundwater. Prentice-Hall INC., Englewood Cliffs NJ, 1979.
  • 23. KAISER H.F. The varimax criterion for analytical rotation in factor analysis. Psychometrika. 23, 187, 1958.
  • 24. MERTLER C. A., VANNATTA R.A. Advanced and Multivariate statistical methods: Practical application and interpretation (3rd ed), Pyrczak, Glendale, CA. pp. 120, 2005.
  • 25. MASSART D.L., KAUFMAN L. The interpretation of analytical chemical data by the use of cluster analysis, Wiley, New York, 1983.
  • 26. PIPER A.M. A graphic procedure in the geochemical interpretation of water-analyses. Transactions, American Geophysical Union. 25, 914, 1944.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8bee9abd-5da1-4182-b281-b8672ab1dcb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.