PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 61 | 1 |

Tytuł artykułu

Trends in edible vegetable oils analysis. Part A. Determination of different components of edible oils - a review

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This review presents recent approaches applied to analysis of edible oils. In the last decade increasing attention has been paid to human diet concerning also edible oils and fats as a source of healthy energy. One of the major problems related to fats are oil oxidation reactions which decrease the nutritive value of edible oils. This paper describes methods developed to analyse different components of edible oils. The stress is put on methods used to assess oxidation stability of edible oils, their purity and approaches to determine their geographical origin.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

61

Numer

1

Opis fizyczny

p.33-43,fig.,ref.

Twórcy

autor
  • Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
autor

Bibliografia

  • 1. van Aardt M., Duncan S.E., Long T.E., O’Keefe S.F., Marcy J.E., Sims S.R., Effect of antioxidants on oxidative stability of edible fats and oils: thermogravimetric analysis. J. Agric. Food Chem., 2004, 52, 587–591.
  • 2. Aparicio R., Aparicio-Ruýz R., Authentication of vegetable oils by chromatographic techniques. J. Chromatogr. A, 2000, 881, 93–104.
  • 3. Bester E., Butinar B., Bucar-Miklavcic M., Golob T., Chemical changes in extra virgin olive oils from Slovenian Istra after thermal treatment. Food Chem. 2008, 108, 446–454.
  • 4. Bonoli M., Bendini A., Cerretani L., Lercker G., Toschi T.G., Qualitative and semiquantitative analysis of phenolic compounds in extra virgin olive oils as a function of the ripening degree of olive fruits by different analytical techniques. J. Agric. Food Chem., 2004, 52, 7026–7032.
  • 5. Camin F., Larcher R., Perini M., Bontempo L., Bertoldi D., Gagliano G., Nicolini G., Versini G., Characterisation of authentic Italian extra-virgin olive oils by isotope ratios of C, O and H and mineral composition. Food Chem., 2010, 118, 901–909.
  • 6. Capote F.P., Jimenez J.R., de Castro M.D.L., Sequential (step- -by-step) detection, identification and quantitation of extra virgin olive oil adulteration by chemometric treatment of chromatographic profiles. Anal. Bioanal. Chem., 2007, 388, 1859–1865.
  • 7. Carrasco-Pancorbo A., Cerretani L., Bendini A., Segura-Carretero A., Lercker G., Fernandez-Gutierrez A., Evaluation of the influence of thermal oxidation on the phenolic composition and on the antioxidant activity of extra-virgin olive oils. J. Agric. Food Chem., 2007, 55, 4771–4780.
  • 8. Caruso D., Colombo R., Patelli R., Giavarini F., Galli G., Rapid evaluation of phenolic component profile and analysis of oleuropein aglycon in olive oil by atmospheric pressure chemical ionization- mass spectrometry (APCI-MS). J. Agric. Food Chem., 2000, 48, 1182–1185.
  • 9. Casas J.S., Gordillo C. De M., Bueno E.O., Exposito J.M., Mendoza M.F., Hierro T.A., Gonzalez L.G., Cano M.M., Characteristics of virgin olive oils from the Olive Zone of Extremadura (Spain), and an aproximation to their varietal origin. J. Am. Oil Chem. Soc., 2009, 86, 933–940.
  • 10. Catharino R.R., Haddad R., Cabrini L.G., Cunha I.B.S., Sawaya A.C.H.F., Eberlin M.N., Characterization of vegetable oils by electrospray ionization mass spectrometry fingerprinting: classification, quality, adulteration and aging. Anal. Chem., 2005, 77, 7429–7433.
  • 11. Cavalli J-F., Fernandez X., Lizzani-Cuvelier L., Loiseau A-M., Characterization of volatile compounds of French and Spanish virgin olive oils by HS-SPME: Identification of quality-freshness markers. Food Chem., 2004, 88, 151–157.
  • 12. Cecchi T., Passamonti P., Cecchi P., Study of the quality of extra virgin olive oil stored in PET bottles with or without an oxygen scavenger. Food Chem., 2010, 120, 730–735.
  • 13. Cerretani L., Lerma-Garcia M.J., Herrero-Martinez J.M., Gallina- Toschi T., Simon-Alfonso E.F., Determination of tocopherols and tocotrienols in vegetable oils by nanoliquid chromatography with ultraviolet-visible detection using a silica monolithic column. J. Agric. Food Chem., 2010, 58,757–761.
  • 14. Chiou R.Y-Y., Liu C-P., Hou C-J., Liu C-D., Comparison of fatty acid composition and oxidative stability of peanut oils prepared from spring and fall crops of peanuts. J. Agric. Food Chem., 1995, 43, 676–679.
  • 15. Christy A.A., Egeberg P.K., Ostensen E.T., Simultaneous quantitative determination of isolated trans fatty acids and conjugated linoleic acids in oils and fats by chemometric analysis of the infrared profiles. Vibrational Spectroscopy, 2003, 33, 37–48.
  • 16. Coppin E.A., Pike O.A., Oil stability index correlated with sensory determination of oxidative stability in light-exposed soybean oil. J. Am. Oil Chem. Soc., 2001, 78, 13–18.
  • 17. Daniels R.L., Kim H.J., Min D.B., Hydrogenation and interesterification effects on the oxidative stability and melting point of soybean oil. J. Agric. Food Chem., 2006, 54, 6011–6015.
  • 18. Deiana M., Rosa A., Cao C.F., Pirisi F.M., Bandino G., Dessi M.A., Novel approach to study oxidative stability of extra virgin olive oils: importance of α-tocopherol concentration. J. Agric. Food Chem., 2002, 50, 4342–4346.
  • 19. Drozdowski B., Lipidy. 2002, in: Chemia Żywności (ed. Z.E. Sikorski). WNT, Warszawa, pp. 171–228 (in Polish).
  • 20. Drozdowski B., Lipidy. 1988, in: Chemia Żywności (eds. Z.E. Sikorski, B. Drozdowki, B. Samotus, M. Pałasiński). WNT, Warszawa, pp. 129–212 (in Polish).
  • 21. Fu S., Segura-Carretero A., Arraez-Roman D., Menendez J.A., De La Torre A., Fernandez-Gutierrez A., Tentative characterization of novel phenolic compounds in extra virgin olive oils by rapid-resolution liquid chromatography coupled with mass spectrometry. J. Agric. Food Chem., 2009, 57, 11140–11147.
  • 22. Giuffrida F., Destaillats F., Egart M.H., Hug B., Golay P-A., Skibsted L.H., Dionisi F., Activity and thermal stability of antioxidants by differential scanning calorimetry and electron spin resonance spectroscopy. Food Chem. 2007, 101, 1108–1114.
  • 23. Gliszczyńska-Świgło A., Sikorska E., Simple reversed-phase liquid chromatography method for determination of tocopherols in edible plant oils. J. Chromatogr. A, 2004, 1048, 195–198.
  • 24. Gomez-Alonso S., Salvador M.D., Fregapane G., Phenolic compounds profile of Cornicabra virgin olive oil. J. Agric. Food Chem., 2002, 50, 6812–6817.
  • 25. Gomez-Ariza J.L., Arias-Borrego A., Garcia-Barrera T., Beltran R., Comparative study of electrospray and photospray ionization sources coupled to quadrupole time-of-flight mass spectrometer for olive oil authentication. Talanta, 2006, 70, 859–869.
  • 26. Gromadzka J., Wardencki W., Lores M., LLompart M., Fernandez- Alvarez M., Lipińska K., Investigation of edible oils oxidation stability using photooxidation and SPME/GC method for determination of volatile compounds – preliminary investigation. Pol. J. Food Nutr. Sci., 2008, 58, 325–328.
  • 27. Guo L., Xie M-Y., Yan A-P., Wan Y-Q., Wu Y-M., Simultaneous determination of five synthetic antioxidants in edible vegetable oil by GC-MS. Anal. Bioanal. Chem., 2006, 386, 1881–1887.
  • 28. Gutierrez F., Fernandez J.L., Determinant parameters and components in the storage of virgin olive oil. Prediction of storage time beyond which the oil is no longer of “extra” quality. J. Agric. Food Chem., 2002, 50, 571–577.
  • 29. Hęś M., Korczak J., Nogala-Kałucka M., Jędrusek-Golińska A., Gramza A., Accelerated methods in durability research of stabilized rapeseed oil. Oilseed Crops, 2001, 22, 517–526.
  • 30. Jeleń H.H., Mildner-Szkudlarz S., Jasińska I., Wąsowicz E., A headspace-SPME-MS method for monitoring rapeseed oil autoxidation. J. Am. Oil Chem. Soc., 2007. 84, 509–517.
  • 31. Jeleń H.H., Obuchowska M., Zawirska-Wojtasiak R., Wąsowicz E., Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality. J. Agric. Food Chem., 2000, 48, 2360–2367.
  • 32. Jimenez A., Beltran G., Aguilera M.P., Application of solid-phase microextraction to the analysis of volatile compounds in virgin olive oils. J. Chromatogr. A, 2004, 1028, 321–324.
  • 33. Kardash-Strochkova E., Tur’yan Y.I., Kuselman I., Redox-potentiometric determination of peroxide value in edible oils without titration. Talanta, 2001, 54, 411–416.
  • 34. Keszler A., Kriska T., Nemeth A., Mechanism of volatile compound production during storage of sunflower oil. J. Agric. Food Chem., 2000, 48, 5981–5985.
  • 35. Keszler A., Heberger K., Identification of volatile compounds in sunflower oil by headspace SPME and ion-trap GC/MS. J. High Resol. Chromatogr., 1998, 21, 368–370.
  • 36. Keszler A., Heberger K., Gude M., Quantitative analysis of aliphatic aldehydes by headspace SPME sampling and ion-trap GC-MS. Chromatographia, 1998, 48, 127–132.
  • 37. Koprna R., Kolovrat O., Nerusil P., Comparison of accuracy of screening methods for determination of glucosinolate content in winter rape seed. Oilseed Crops, 2002, 23, 267–274.
  • 38. Leclercq S., Reineccius G.A., Milo C., Effect of type of oil and addition of δ-tocopherol on model flavor compound stability during storage. J. Agric. Food Chem., 2007, 55, 9189–9194.
  • 39. Lee J.M., Chung H., Chang P-S., Lee J.H., Development of a method predicting the oxidative stability of edible oils using 2,2-diphenyl-1-picrylhydrazyl (DPPH). Food Chem., 2007a, 103, 662–669.
  • 40. Lee J.M., Kim D-H., Chang P-S., Lee J.H., Headspace-solid phase microextraction (HS-SPME) analysis of oxidized volatiles from free fatty acids (FFA) and application for measuring hydrogen donating antioxidant activity. Food Chem., 2007b, 105, 414–420.
  • 41. Lerma-Garcia M.J., Concha-Herrera V., Herrero-Martinez J.M., Simo-Alfonso E.F., Classification of extra virgin olive oils produced at La Comunitat Valenciana according to their genetic variety using sterol profiles established by high-performance liquid chromatography with mass spectrometry detection. J. Agric. Food Chem. 2009, 57, 10512–10517.
  • 42. Lopez-Lopez A., Montano A., Ruiz-Mendez M.V., Garrido-Fernandez A., Sterols, fatty acids and triterpenic alcohols in commercial table olives. J. Am. Oil Chem. Soc., 2008, 85, 253–262.
  • 43. Małecka M., Non-glyceride fraction of edible oils as antioxidants. Tł. Jad., 1995, 30, 123–130 (in Polish).
  • 44. Michulec M., Wardencki W., Development of headspace solidphase microextraction-gas chromatography method for the determination of solvent residues in edible oils and pharmaceuticals. J. Chromatogr. A, 2005, 1071, 119–124.
  • 45. Michulec M., Wardencki W., Determination of solvents residues in vegetable oils and pharmaceuticals by headspace analysis and capillary gas chromatography. Chromatographia, 2004, 60, 273–277.
  • 46. Mildner-Szkudlarz S., Jeleń H.H., Zawirska-Wojtasiak R., Wąsowicz E., Application of headspace-solid phase microextraction and multivariate analysis for plant oils differentiation. Food Chem., 2003, 83, 515–522.
  • 47. Miraliakbari H., Shahidi F., Oxidative stability of tree nut oils. J. Agric. Food Chem., 2008, 56(12), 4751–4759.
  • 48. Mossoba M.M., Seiler A., Kramer J.K.G., Milosevic V., Milosevic M., Azizian H., Steinhart H., Nutrition labeling: rapid determination of total trans fats by using internal reflection infrared spectroscopy and a second derivative procedure. J. Am. Oil Chem. Soc., 2009, 86, 1037–1045.
  • 49. Naglic M., Smidovnik A., Use of capillary gas chromatography for determining the hydrogenation level of edible oils. J. Chromatogr. A, 1997, 767, 335–339.
  • 50. Nogala-Kałucka M., Muśnicki Cz., Kupczyk B., Jasińska- -Stępniak A., Bartkowiak-Fludra E., Siger A., Preliminary studies of tocochromanol content in seeds of open pollinated and hybrid varieties of winter rape. Oilseed Crops, 2005, 26, 561–570.
  • 51. Noguera-Orti J.F., Villanueva-Camanas R.M., Raims-Ramos G., Direct injection of edible oils as microemulsions in a micellar mobile phase applied to the liquid chromatographic determination of synthetic antioxidants. Anal. Chim. Acta, 1999, 387, 127–134.
  • 52. Nouros P.G., Georgiou C.A, Polissiou M.G., Direct parallel flow injection multichannel spectrophotometric determination of olive oil peroxide value. Anal. Chim. Acta, 1999, 389, 239–245.
  • 53. Ocakoglu D., Tokatli F., Ozen B., Korel F., Distribution of simple phenols, phenolic acids and flavonoids in Turkish monovarietal extra virgin olive oils for two harvest years. Food Chem., 2009, 113, 401–410.
  • 54. Pellegrini N., Visioli F., Buratti S., Brighenti F., Direct analysis of total antioxidant activity of olive oil and studies on the influence of heating. J. Agric. Food Chem., 2001, 49, 2532–2538.
  • 55. Płatek T., The method to assess edible oils and fats oxidation stability in Rancimat aparatus. Tł. Jad., 1995, 30, 25–34 (in Polish).
  • 56. PN-90/R-66151. Industrial oilseed crops – Double zero rapeseed (Brasica napus var. oleifera) and oil-yielding rape (Brasica rapa var. oleifera) (in Polish).
  • 57. PN-EN ISO 5509: 2001. Animal and vegetable fats and oils – Preparation of methyl esters of fatty acids.
  • 58. PN-93/R-66166. Animal and vegetable fats and oils – Determination of glucosinolates content (in Polish).
  • 59. Richards A., Wijesundera C., Salisbury P., Evaluation of oxidative stability of canola oils by headspace analysis. J. Am. Oil Chem. Soc., 2005, 82, 869–874.
  • 60. Romero M.P., Tovar M.J., Girona J., Motilva M.J., Changes in the HPLC phenolic profile of virgin olive oil from young trees (Olea europaea L. Cv. Arbequina) grown under different deficit irrigation strategies. J. Agric. Food Chem., 2002, 50, 5349–5354.
  • 61. Romero N., Robert P., Masson L., Ortiz J., Gonzalez K., Tapia K., Dobaganes C., Effect of α-tocopherol, α-tocotrienol and Rosa mosqueta shell extract on the performance of antioxidant- -stripped canola oil (Brassica sp) at high temperature. Food Chem., 2007, 104, 383–389.
  • 62. Rotkiewicz D., Murawa D., Konopka I., Warmiński K., Glucosinolates of two varieties of spring rapeseed treated with herbicides. Oilseed Crops, 2000, 21, 271–277.
  • 63. Rudzińska M., Muśnicki Cz., Wąsowicz E., Phytosterols and their oxidized derivatives in seeds of winter oilseed rape. Oilseed Crops, 2003, 24, 51–66.
  • 64. Saad B., Wai W.T., Lim B.P., Saleh M.I., Flow injection determination of peroxide value in edible oils using triiodide detector. Anal. Chim. Acta, 2006, 565, 261–270.
  • 65. Senorans F.J., Tabera J., Herraiz M., Rapid separation of free sterols in edible oils by on-line coupled reversed phase liquid chromatography-gas chromatography. J. Agric. Food Chem., 1996, 44, 3189–3192.
  • 66. Siger A., Nogala-Kałucka M., Lampart- Szczapa E., Hoffmann A., Phenolic compound contents in new rape varieties. Oilseed Crops, 2004, 25, 263–274.
  • 67. Siger A., Nogala-Kałucka M., Lampart- Szczapa E., Hoffmann A., Antioxidant activity of phenolic compounds of selected cold-pressed and refined plant oils. Oilseed Crops, 2005, 26, 549–559.
  • 68. Smith S.A., King R.E., Min D.B., Oxidative and thermal stabilities of genetically modified high oleic sunflower oil. Food Chem., 2007, 102, 1208–1213.
  • 69. Stevenson D.G., Eller F.J., Wang L., Jane J-L., Wang T., Inglett G.E., Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric. Food Chem., 2007, 55, 4005–4013.
  • 70. Stoewsand G.S., Bioactive Organosulfur Phytochemicals in Brassica oleracea Vegetables. Food Chem. Toxicol., 1995, 33, 537–543.
  • 71. Szukalska E., The chosen problems of fats oxidation. Tł. Jad., 2003, 38, 42–58 (in Polish).
  • 72. Thomaidis N.S., Georgiou C.A., Edible oil analysis by flow injection. Laboratory Automation and Information Management, 1999, 34, 101–114.
  • 73. Thomaidis N.S., Georgiou C.A., Direct parallel flow injection multichannel spectrophotometric determination of olive oil iodine value. Anal. Chim. Acta, 2000, 405, 239–245.
  • 74. Tian K., Dasgupta P.K., Determination of oxidative stability of oils and fats. Anal. Chem., 1999, 71, 1692–1698.
  • 75. Troczyńska J., System myrosinase – glucosinolates — its character and functions in plant. Oilseed Crops, 2005, 26, 51–64.
  • 76. Velasco J., Andersen M.L., Skibsted L.H., Electron spin resonance spin trapping for analysis of lipid oxidation in oils: inhibiting effect of the spin trap α-phenyl-N-tert-butylnitrone on lipid oxidation. J. Agric. Food Chem., 2005, 53, 1328–1336.
  • 77. Vichi S., Pizzale L., Conte L.S., Buxaderas S., Pez-Tamames E.L., Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: Characterization of virgin olive oils from two distinct geographical areas of northern Italy. J. Agric. Food Chem., 2003, 51, 6572–6577.
  • 78. Villen J., Blanch G.P., del Castillo M.L.R., Herraiz M., Rapid and simultaneous analysis of free sterols, tocopherols and squalene in edible oils by coupled reversed-phase liquid chromatography- gas chromatography. J. Agric. Food Chem., 1998, 46, 1419–1422.
  • 79. Warner K., Effects on the flavor and oxidative stability of stripped soybean and sunflower oils with added pure tocopherols. J. Agric. Food Chem., 2005, 53, 9906–9910.
  • 80. Webster L., Simpson P., Shanks A.M., Moffat C.F., The authentication of olive oil on the basis of hydrocarbon concentration and composition. Analyst, 2000, 125, 97–104.
  • 81. Wenzl T., Prettner E., Schweiger K., Wagner F. S., An improved method to discover adulteration of Styrian pumpkin seed oil. J. Biochem. Biophys. Methods, 2002, 53, 193–202.
  • 82. Yang M-H., Lin H-J., Choong Y-M., A rapid gas chromatographic method for direct determination of BHA, BHT and TBHQ in edible oils and fats. Food Res. Int., 2002, 35, 627–633.
  • 83. Zhang G., Ni Y., Churchill J., Kokot S., Authentication of vegetable oils on the basis of their physico-chemical properties with the aid of chemometrics. Talanta, 2006, 70, 293–300.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8b5611e5-fa09-4139-9386-1f10f5c056a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.