PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 87 | 1 |

Tytuł artykułu

Changes in forest cover in Sudety Mountains during the last 250 years: patterns, drivers, and landscape-scale implications for nature conservation

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Historical ecology gives a reference point to explain the contemporary state of particular ecosystems as well as entire landscapes. In this study, we examined the quantitative changes in forest cover in the central part of the Sudety Massif (area ca. 1,120 km²) during the last 250 years. The information regarding forest patch distribution and its changes was derived by comparison of maps from 1747 and the 1970s drawn at scales of 1:33,000 and 1:25,000, respectively. To examine the effect of environmental variables (topography and soil conditions) and human population density on forest patch distribution and its changes (afforestation, deforestation), a set of 100 circular plots with a diameter of 1 km was established. The influence of explanatory variables was examined using regression tree methods. Changes at the level of the entire landscape were tested using a set of 25 landscape windows (5 × 5 km each). We found that the overall forest cover increased to 36.4% in the twentieth century from 30.4% in the middle of the eighteenth century. The ancient forests constituted 59% of the total forest area existing more recently. The forests in the eighteenth century occurred mostly on steep slopes, deep valley bottoms, and summits. The land relief explains more than half of the total variation in forest distribution (R² = 0.56). The effects of soil type and human population density were negligible. The contemporary forest pattern results from both land relief and the historical pattern of human population density in the middle of the eighteenth century (R² = 0.64), while the effect of soil type was negligible. The pattern of deforestation (R² = 0.53) and afforestation (R² = 0.36) results from both land relief as well as recent and nineteenth-century human population density. About 83% of the recent forest area is in physical contact with patches of the ancient forest, which provides an optimistic outlook for the migration of ancient forest species into new areas. Furthermore, changes in landscape structure reveal increased connectivity among forest patches, with potential benefits for the migration of forest species with long-range dispersal.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

87

Numer

1

Opis fizyczny

Article 3576 [14p.],fig.,ref.

Twórcy

autor
  • Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
autor
  • Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
autor
  • Institute of Agroecology and Plant Production, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Pl.Grunwaldzki 24A, 50-363 Wrocław, Poland
autor
  • Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland

Bibliografia

  • 1. Board MA. Millennium ecosystem assessment. Washington, DC: New Island; 2005.
  • 2. Fischer J, Lindenmayer DB. Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr. 2007;16(3):265–280. https://doi.org/10.1111/j.1466-8238.2007.00287.x
  • 3. Marcucci DJ. Landscape history as a planning tool. Landsc Urban Plan. 2000;49(1–2):67– 81. https://doi.org/10.1016/S0169-2046(00)00054-2
  • 4. Johann E. Traditional forest management under the influence of science and industry: the story of the alpine cultural landscapes. For Ecol Manage. 2007;249(1):54–62. https://doi.org/10.1016/j.foreco.2007.04.049
  • 5. Stein ED, Dark S, Longcore T, Hall N, Beland M, Grossinger R, et al. Historical ecology and landscape change of the San Gabriel River and floodplain. Los Angeles, CA: Southern California Costal Water Research Project; 2007.
  • 6. Fuchs R, Herold M, Verburg PH, Clevers JG, Eberle J. Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Glob Chang Biol. 2015;21(1):299–313. https://doi.org/10.1111/gcb.12714
  • 7. Orczewska A. The impact of former agriculture on habitat conditions and distribution patterns of ancient woodland plant species in recent black alder [Alnus glutinosa (L.) Gaertn.] woods in south-western Poland. For Ecol Manage. 2009;258(5):794–803. https://doi.org/10.1016/j.foreco.2009.05.021
  • 8. Nordén B, Dahlberg A, Brandrud TE, Fritz Ö, Ejrnaes R, Ovaskainen O. Effects of ecological continuity on species richness and composition in forests and woodlands: a review. Ecoscience. 2014;21(1):34–45. https://doi.org/10.2980/21-1-3667
  • 9. Foster D, Swanson F, Aber J, Burke I, Brokaw N, Tilman D, et al. The importance of land-use legacies to ecology and conservation. AIBS Bulletin. 2003;53(1):77–88. https://doi.org/10.1641/0006-3568(2003)053%5B0077:TIOLUL%5D2.0.CO;2
  • 10. de Keersmaeker L, Onkelinx T, de Vos B, Rogiers N, Vandekerkhove K, Thomaes A, et al. The analysis of spatio-temporal forest changes (1775–2000) in Flanders (northern Belgium) indicates habitat-specific levels of fragmentation and area loss. Landsc Ecol. 2015;30(2):247–259. https://doi.org/10.1007/s10980-014-0119-7
  • 11. Jackson ST, Hobbs RJ. Ecological restoration in the light of ecological history. Science. 2009;325(5940):567–569. https://doi.org/10.1126/science.1172977
  • 12. Orczewska A, Piotrowska A, Lemanowicz J. Soil acid phosphomonoesterase activity and phosphorus forms in ancient and post-agricultural black alder [Alnus glutinosa (L.) Gaertn.] woodlands. Acta Soc Bot Pol. 2012;81(2):81–86. https://doi.org/10.5586/asbp.2012.013
  • 13. Kaplan JO, Krumhardt KM, Zimmermann N. The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev. 2009;28(27–28):3016–3034. https://doi.org/10.1016/j.quascirev.2009.09.028
  • 14. Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE. An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv. 1999;91(1):9–22. https://doi.org/10.1016/S0006-3207(99)00045-2
  • 15. Stefańska-Krzaczek E, Kącki Z, Szypuła B. Coexistence of ancient forest species as an indicator of high species richness. For Ecol Manage. 2016;365:12–21. https://doi.org/10.1016/j.foreco.2016.01.012
  • 16. Moszkowicz L. Distribution of vascular plant species in woodland patches of Ojców National Park (southern Poland) in relation to seed dispersal. Acta Soc Bot Pol. 2016;85(1):3484. https://doi.org/10.5586/asbp.3484
  • 17. Spencer JW, Kirby KJ. An inventory of ancient woodland for England and Wales. Biol Conserv. 1992;62:77–93. https://doi.org/10.1016/0006-3207(92)90929-H
  • 18. Wulf M. Forest policy in the EU and its influence on the plant diversity of woodlands. J Environ Manage. 2003;67:15–25. https://doi.org/10.1016/S0301-4797(02)00184-6
  • 19. Wulf M, Rujner H. A GIS-based method for the reconstruction of the late eighteenth century forest vegetation in the Prignitz region (NE Germany). Landsc Ecol. 2011;26(2):153–168. https://doi.org/10.1007/s10980-010-9555-1
  • 20. Dzwonko Z, Loster S. Wskaźnikowe gatunki roślin starych lasów i ich znaczenie dla ochrony przyrody i kartografii roślinności. Prace Geograficzne. 2001;178:120–132.
  • 21. Orczewska A. Age and origin of forests in south-western Poland and their importance for ecological studies in man-dominated landscapes. Landsc Res. 2009;34(5):599–617. https://doi.org/10.1080/01426390903184579
  • 22. Bergès L, Catherine A, Lucie A, Frédéric A, Sandrine C, Jean‐Luc D. Past landscape explains forest periphery‐to‐core gradient of understorey plant communities in a reforestation context. Divers Distrib. 2016;22(1):3–16. https://doi.org/10.1111/ddi.12384
  • 23. Vellend M, Verheyen K, Jacquemyn H, Kolb A, van Calster H, Peterken G, et al. Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology. 2006;87(3):542–548. https://doi.org/10.1890/05-1182
  • 24. Kolk J, Naaf T. Herb layer extinction debt in highly fragmented temperate forests – completely paid after 160 years? Biol Conserv. 2015;182:164–172. https://doi.org/10.1016/j.biocon.2014.12.004
  • 25. Vinter T, Dinnétz P, Danzer U, Lehtilä K. The relationship between landscape configuration and plant species richness in forests is dependent on habitat preferences of species. Eur J For Res. 2016;135(6):1071–1082. https://doi.org/10.1007/s10342-016-0994-3
  • 26. Ziółkowska E, Ostapowicz K, Radeloff VC, Kuemmerle T, Sergiel A, Zwijacz-Kozica T, et al. Assessing differences in connectivity based on habitat versus movement models for brown bears in the Carpathians. Landsc Ecol. 2016;31(8):1863–1882. https://doi.org/10.1007/s10980-016-0368-8
  • 27. Castellón TD, Sieving KE. Landscape history, fragmentation, and patch occupancy: models for a forest bird with limited dispersal. Ecol Appl. 2006;16(6):2223–2234. https://doi.org/10.1890/1051-0761(2006)016%5B2223:LHFAPO%5D2.0.CO;2
  • 28. Ziemiański MA, Zych M. Pollination biology of the urban populations of an ancient forest, spring ephemeral plant. Acta Soc Bot Pol. 2016;85(2):3489. https://doi.org/10.5586/asbp.3489
  • 29. Lindborg R, Eriksson O. Historical landscape connectivity affects present plant species diversity. Ecology. 2004;85(7):1840–1845. https://doi.org/10.1890/04-0367
  • 30. Cousins SA, Ohlson H, Eriksson O. Effects of historical and present fragmentation on plant species diversity in semi-natural grasslands in Swedish rural landscapes. Landsc Ecol. 2007;22(5):723–730. https://doi.org/10.1007/s10980-006-9067-1
  • 31. Niemandt C, Greve M. Fragmentation metric proxies provide insights into historical biodiversity loss in critically endangered grassland. Agric Ecosyst Environ. 2016;235:172–181. https://doi.org/10.1016/j.agee.2016.10.018
  • 32. Metzger JP, Martensen AC, Dixo M, Bernacci LC, Ribeiro MC, Teixeira AMG, et al. Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol Conserv. 2009;142(6):1166–1177. https://doi.org/10.1016/j.biocon.2009.01.033
  • 33. Schaffer G, Levin N. Challenges and possible approaches for using GIS as a tool in historical geography landscape research: a meta-analysis review. e-Perimetron. 2015;10(3):94–123.
  • 34. Szymura TH, Dunajski A, Ruczakowska AM. Zmiany powierzchni lasów na obszarze Karkonoskiego Parku Narodowego w okresie 1747–1977. Opera Corcontica. 2010;47:159.
  • 35. Zachwatowicz M, Giętkowski T. Temporal changes of land cover in relation to chosen environmental variables in different types of landscapes. Miscellanea Geographica. 2010;14:33–45.
  • 36. Zgłobicki W, Gawrysiak L, Baran-Zgłobicka B, Telecka M. Long-term forest cover changes, within an agricultural region, in relation to environmental variables, Lubelskie Province, eastern Poland. Environ Earth Sci. 2016;75(20):1373. https://doi.org/10.1007/s12665-016-6195-z
  • 37. Ciupa T, Suligowski R, Walek G. Use of GIS-supported comparative cartography and historical maps in long-term forest cover changes analysis in the Holy Cross Mountains (Poland). Balt For. 2016;22(1):63–73.
  • 38. Kozak J. Forest cover change in the Western Carpathians in the past 180 years: a case study in the Orawa region in Poland. Mt Res Dev. 2003;23(4):369–375. https://doi.org/10.1659/0276-4741(2003)023%5B0369:FCCITW%5D2.0.CO;2
  • 39. Kozak J. Forest cover changes and their drivers in the Polish Carpathian Mountains since 1800. In: Nagendra H, Southworth J, editors. Reforesting landscapes: linking pattern and process. Dordrecht: Springer; 2009. p. 253–273. https://doi.org/10.1007/978-1-4020-9656-3_11
  • 40. Munteanu C, Kuemmerle T, Boltiziar M, Butsic V, Gimmi U, Halada L, et al. Forest and agricultural land change in the Carpathian region – a meta-analysis of long-term patterns and drivers of change. Land Use Policy. 2014;38:685–697. https://doi.org/10.1016/j.landusepol.2014.01.012
  • 41. Kaim D, Kozak J, Kolecka N, Ziółkowska E, Ostafin K, Ostapowicz K, et al. Broad scale forest cover reconstruction from historical topographic maps. Appl Geogr. 2016;67:39– 48. https://doi.org/10.1016/j.apgeog.2015.12.003
  • 42. Wulf M, Sommer M, Schmidt R. Forest cover changes in the Prignitz region (NE Germany) between 1790 and 1960 in relation to soils and other driving forces. Landsc Ecol. 2010;25(2):299–313. https://doi.org/10.1007/s10980-009-9411-3
  • 43. Wulf M, Jahn U, Meier K. Land cover composition determinants in the Uckermark (NE Germany) over a 220-year period. Reg Environ Change. 2016;16(6):1793–1805. https://doi.org/10.1007/s10113-016-0930-6
  • 44. Świerkosz K. Stan ochrony roślin naczyniowych oraz wybranych siedlisk przyrodniczych w Sudetach i na ich Przedgórzu w ramach systemu Natura 2000. In: Furmankiewicz M, Potocki J, editors. Problemy ochrony przyrody w zagospodarowaniu przestrzennym Sudetów. Jelenia Góra: Muzeum Przyrodnicze; 2004. p. 97–108.
  • 45. Fabiszewski J. editor. Wartości botaniczne wybranych pasm Sudetów. Wrocław: Wrocławskie Towarzystwo Naukowe; 2004. (Prace Wrocławskiego Towarzystwa Naukowego, Seria B; vol 213).
  • 46. Stachura-Skierczyńska K. Ocena wartości biologicznej lasów w Polsce. Warszawa: OTOP; 2007.
  • 47. Atlas Ssaków Polski [Internet]. 2017 [cited 2017 Jun 21]. Available from: http://www.iop.krakow.pl/ssaki/
  • 48. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25(15):1965–1978. https://doi.org/10.1002/joc.1276
  • 49. Nyrek A. Kultura użytkowania gruntów uprawnych, lasów i wód na Śląsku od XV do XX wieku. Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego; 1992.
  • 50. Czetwertyński-Sytnik L, Kozioł E, Mazurski KR. Settlement and sustainability in the Polish Sudetes. GeoJournal. 2000;50(2):273–284. https://doi.org/10.1023/A:1007165901891
  • 51. Latocha A. Land-use changes and longer-term human–environment interactions in a mountain region (Sudetes Mountains, Poland). Geomorphology. 2009;108(1):48–57. https://doi.org/10.1016/j.geomorph.2008.02.019
  • 52. Matuszkiewicz W, Faliński JB, Kostrowicki AS, Matuszkiewicz JM, Olaczek R, Wojterski T. Potencjalna roślinność naturalna Polski, mapa przeglądowa 1:300,000. Warszawa: IGiPZ PAN; 1995.
  • 53. Milnik A. Ein Land wie ein Eichenblatt: Schlesische Forstgeschichte in preußischer Zeit (1741–1945). Remagen-Oberwinter: Kessel; 2010.
  • 54. Szymura TH. How does recent vegetation reflects previous systems of forest management? Pol J Ecol. 2012;60(4):859–862.
  • 55. Plan urządzenia lasu dla Nadleśnictwa Kamienna Góra na okres od 1 stycznia 2009 r. do 31 grudnia 2018 r. [Internet]. 2009 [cited 2017 Jun 10]. Available from: http://bip.lasy.gov.pl/pl/bip/dg/rdlp_wroclaw/nadl_kamienna_gora/ plan_urzadzania_lasu
  • 56. Plan urządzania lasu dla nadleśnictwa Wałbrzych na okres 01.01.2009– 31.12.2018 r. [Internet]. 2009 [cited 2017 Jun 10]. Available from: http://bip.lasy.gov.pl/pl/bip/dg/rdlp_wroclaw/nadl_walbrzych/plan_urzadzania_lasu
  • 57. Janczak J. Mapy Fryderyka Christiana von Wredego jako źródło dziejów Śląska. Śląski Kwartalnik Historyczny Sobótka. 1982;37(3–4):535–540.
  • 58. Rumsey D, Williams M. Historical maps in GIS. In: Knowles AK, editor. Past time, past place: GIS for history. Redlands: ESRI Press; 2002.
  • 59. Jarvis A, Reuter HI, Nelson A, Guevara E. Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT) [Internet]. 2008 [cited 2017 Jun 20]. Available from: http://srtm.csi.cgiar.org
  • 60. Harmonized World Soil Database v 1.2 (HWSD) [Internet]. 2012 [cited 2017 Jun 12]. Available from: http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/ harmonized-world-soil-database-v12/en/
  • 61. Kartenmeister Database [Internet]. 2001 [cited 2017 Jun 5]. Available from: http://www.kartenmeister.com
  • 62. Baza danych obiektów ogólnogeograficznych (BDOO) [Internet]. 2011 [cited 2017 Jun 5]. Available from: http://www.geoportal.gov.pl/dane/baza-danych-ogolnogeograficznych-bdo
  • 63. Herzog F, Steiner B, Bailey D, Baudry J, Billeter R, Bukácek R, et al. Assessing the intensity of temperate European agriculture at the landscape scale. Eur J Agron. 2006;24(2):165–181. https://doi.org/10.1016/j.eja.2005.07.006
  • 64. Biró M, Szitár K, Horváth F, Bagi I, Molnár Z. Detection of long-term landscape changes and trajectories in a Pannonian sand region: comparing land-cover and habitat-based approaches at two spatial scales. Community Ecology. 2013;14(2):219–230. https://doi.org/10.1556/ComEc.14.2013.2.12
  • 65. McGarigal K. Landscape pattern metrics. In: El-Shaarawi AH, Piegorsch WW, editors. Encyclopedia of environmetrics. 2nd ed. Chichester: John Wiley & Sons; 2002. p. 1135–1142.
  • 66. Wang X, Blanchet FG, Koper N. Measuring habitat fragmentation: an evaluation of landscape pattern metrics. Methods Ecol Evol. 2014;5(7):634–646. https://doi.org/10.1111/2041-210X.12198
  • 67. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. Monterey, CA: Wadsworth & Brooks; 1984.
  • 68. De’ath G, Fabricius KE. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology. 2000;81(11):3178–3192. https://doi.org/10.1890/0012-9658(2000)081%5B3178:CARTAP%5D2.0.CO;2
  • 69. Szabó P. Changes in woodland cover in the Carpathian Basin. Human nature: studies in historical ecology and environmental history. Brno: Institute of Botany of ASCR; 2008. p. 106–115.
  • 70. Ciupa T, Suligowski R, Wałek G. Morphological and soil determinants of forest cover changes in Świętokrzyski National Park and its buffer zone in the last 200 years. Quaestiones Geographicae. 2015;34(1):55–63.
  • 71. Petit CC, Lambin EF. Impact of data integration technique on historical land-use/ land-cover change: comparing historical maps with remote sensing data in the Belgian Ardennes. Landsc Ecol. 2002;17(2):117–132. https://doi.org/10.1023/A:1016599627798
  • 72. Skaloš J, Engstová B, Trpáková I, Šantrůčková M, Podrázský V. Long-term changes in forest cover 1780–2007 in central Bohemia, Czech Republic. Eur J For Res. 2012;131(3):871–884. https://doi.org/10.1007/s10342-011-0560-y
  • 73. Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, et al. The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change. 2001;11(4):261–269. https://doi.org/10.1016/S0959-3780(01)00007-3
  • 74. Lowood HE. The Calculating forester: quantification, cameral science, and the emergence of scientific forestry management in Germany. In: Tore F, Heilbron JL, Rider RE, editors. The quantifying spirit in the eighteenth century. Berkeley, CA: University of California Press;1990.
  • 75. Pullin AS. Biologiczne podstawy ochrony przyrody. Warszawa: Wydawnictwo Naukowe PWN; 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8afa2d9d-4352-4744-a377-3c74e488d3b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.