PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 36 | 1 |

Tytuł artykułu

Semi-automated classification of landform elements in Armenia based on SRTM DEM using k-means unsupervised classification

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Land elements have been used as basic landform descriptors in many science disciplines, including soil mapping, vegetation mapping, and landscape ecology. This paper presents a semi-automatic method based on k-means unsupervised classification to analyze geomorphometric features as landform elements in Armenia. First, several data layers were derived from DEM: elevation, slope, profile curvature, plan curvature and flow path length. Then, k-means algorithm has been used for classifying landform elements based on these morphomertic parameters. The classification has seven landform classes. Overall, landform classification is performed in the form of a three-level hierarchical scheme. The resulting map reflects the general topography and landform character of Armenia.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

1

Opis fizyczny

p.93-103,fig.,ref.

Twórcy

autor
  • Faculty of Geography and Geology, Yerevan State University, Yerevan, Armenia
autor
  • Department of Geography, Faculty of Science, Masaryk University, Brno, the Czech Republic

Bibliografia

  • Adediran A.O., Parcharidis I., Poscolieri M., Pavlopoulos K., 2004. Computer-assisted discrimination of morphological units on north-central Crete (Greece) by applying multivariate statistics to local relief gradients. Geomorphology 58: 357–370. DOI: 10.1016/j.geomorph.2003.07.024.
  • Arakelyan A.A., Piloyan A.S., 2011. Identification and delineation of water bodies at Risk by qualitative and quantitative characteristics on example of Aghstev River Basin. Proceedings of the NAS of the Republic of Armenia – Earth Sciences 64(2): 54–64.
  • Avagyan A.A., Piloyan A.S., Yeritsian H.H., 2010. On Elevation Characteristics and Methodology of its Calculations of Terrain of the Republic of Armenia Based on 1:200000 Scale Digital Elevation Models. Proceedings of the NAS of the Republic of Armenia – Earth Sciences 63(3): 48–58.
  • Balyan S.P., 1969. Structural geomorphology of Armenian Highland and nearly territories. Geomorphology of the Armenian SSR. Yerevan University Press, Yerevan.
  • Bates P.D., Anderson M.G., Horrit M., 1998. Terrain information in geomorphological models: stability, resolution and sensitivity. In: Lane, S., Richards, K., Chandler, J. (eds), Landform Monitoring, Modelling and Analysis. Wiley, Chichester: 279–309.
  • Berry P.A.M., Garlick J.D., Smith R.G., 2007. Near-global validation of the SRTM DEM using satellite radar altimetry. Remote Sensing of Environment 106(1): 17–27. DOI: 10.1016/j.rse.2006.07.011.
  • Bezdek C.J., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.
  • Blumberg D.G., 2006. Analysis of large aeolian (wind-blown) bedforms using the Shuttle Radar Topography Mission (SRTM) digital elevation data. Remote Sensing of Environment 100: 179–189. DOI: 10.1016/j.rse.2005.10.011.
  • Boynagryan V. R., 2007. Slopes and slope processes at the Armenian Highlands. YSU Press, Yerevan.
  • Brown D.G., Lusch D.P., Duda K.A., 1998. Supervised classification of types of glaciated landscapes using digital elevation data. Geomorphology 21: 233–250. DOI: 10.1016/S0169-555X(97)00063-9.
  • Burrough P.A., McDonnell R.A., 1998. Principles of Geographical Information Systems. Oxford University Press, Oxford.
  • Burrough P.A., van Gaans P.F.M., MacMillan R.A., 2000. High-resolution landform classification using fuzzy k-means. Fuzzy Sets and Systems 113: 37–52. DOI: 10.1016/S0165-0114(99)00011-1.
  • Burrough P.A., Wilson J.P., van Gaans P.F.M., Hansen A.J., 2001. Fuzzy k-means classification of topo-climate data as an aid to forest mapping in the greater Yellowstone area, USA. Landscape Ecology 16: 523–546. DOI: 10.1023/A:1013167712622.
  • Butler D., 2001. Geomorphic process-disturbance corridors: a variation on a principle of landscape ecology. Progress in Physical Geography 25: 237–248. DOI: 10.1177/030913330102500204.
  • Chang C.T., Lai J.Z.C., Jeng M.D., 2011. A Fuzzy K-means Clustering Algorithm Using Cluster Center Displacement. Journal of Information Science and Engineering 27(3): 995–1009.
  • Crevenna A.B., Vicente T.R., Valentino S., Frame D., Ortiz M.A., 2005. Geomorphometric analysis for characterizing landforms in Morelos State, Mexico. Geomorphology 67: 407–422. DOI: 10.1016/j.geomorph.2004.11.007.
  • Crippen R.E., Hook S.J., Fielding E.J., 2007. Nighttime ASTER thermal imagery as an elevation surrogate for filling SRTM DEM voids. Geophysical Research Letters 34(1): L01302. DOI: 10.1029/2006GL028496.
  • Dalrymple J.B., Blong R.J., Conacher A.J., 1968. A hypothetical nine unit land surface model. Zeitschrift für Geomorphologie 12: 60–76.
  • De Bruin S., Stein A., 1998. Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model (DEM). Geoderma 83: 17–33. DOI: 10.1016/S0016-7061(97)00143-2.
  • Dehn M., Gärtner H., Dikau R., 2001. Principles of semantic modeling of landform structures. Computers and Geosciences 27: 1005–1010. DOI: 10.1016/S0098-3004(00)00138-2.
  • Dikau R., 1989. The application of a digital relief model to landform analysis in geomorphology. In: Raper, J. (eds), Three Dimensional Applications in Geographical Information Systems. Taylor & Francis, London: 51–77.
  • Dragut L., Blaschke T., 2006. Automated classification of landform elements using object-based image analysis. Geomorphology 81: 330–344. DOI: 10.1016/j.geomorph.2006.04.013
  • Dragut L., Eisank C., 2012. Automated object-based classification of topography from SRTM data. Geomorphology 141–142: 21–33. DOI: 10.1016/j.geomorph.2011.12.001
  • Evans, S., 1972. General Geomorphometry, Derivatives of Altitude, and Descriptive Statistics. In: Chorley R.J. (eds), Spatial Analysis in Geomorphology. Methuen & Co. Ltd., London: 17–90.
  • Ehsani A.H., Quiel F., 2008. Geomorphometric feature analysis using morphometric parameterization and artificial neural networks. Geomorphology 99: 1–12. DOI: 10.1016/j.geomorph.2007.10.002.
  • Falorni G., Teles V., Vivoni V., Bras E.R., Amaratunga K., 2005. Analysis and characterization of the vertical accuracy of digital elevation models from the shuttle radar topography mission. Journal of Geophysical Research 110: F0205. DOI: 10.1029/2003JF000113.
  • Farr T.G., et al., 2007. The shuttle radar topography mission. Reviews of Geophysics 45(2005): 1–33.
  • Forman R.T., 1995. Land Mosaics. The Ecology of Landscape and Regions. Cambridge University Press, Cambridge.
  • Gevorgyan F., Poghosyan D., 1970. On some results of morphometric mapping of the territory the Armenian SSR. Proceedings of NAS Arm. SSR 23(4): 16–24.
  • Gordon J.E., Brazier V., Lees, G., 1994. Geomorphological systems: developing fundamental principles for sustainable landscape management. In: o’Halloran, D., Green, C., Harley, M., Stanley, M., Knill, J. (eds), Geological landscape conservation. Geological Society, London: 185–189
  • Grohmann C.H., Riccomini C., Alves F.M., 2006. SRTM-based morphotectonic analysis of the Pocos de Caldas Alkaline Massif, southeastern Brazil. Computers and Geosciences 33: 10–19. DOI: 10.1016/j.cageo.2006.05.002.
  • Hayakawa Y. S., Oguchi T., Lin Z., 2008. Comparison of new and existing global digital elevation models: ASTER G-DEM and SRTM-3. Geophysical Research Letters 35(17): L17404. DOI: 10.1029/2008GL035036.
  • Hengl T., Rossiter D.G., 2003. Supervised landform classification to enhance and replace photo–interpretation in semi-detailed soil survey. Soil Science Society of America Journal 67: 1810–1822. DOI: 10.2136/sssaj2003.1810.
  • Horton R.E., 1945. Erosional Development of Streams and their Drainage Basins, Hydrophysical Approach to Quantitative Morphology. Bulletin of the Geological Society of America 56: 275–330.
  • Hubbard B.E., Sheridan M.F., Carrasco-Núñez G., Díaz-Castellón R., Rodríguez S.R., 2007. Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data. Journal of Volcanology and Geothermal Research, 160: 99–124. DOI: 10.1016/j.jvolgeores.2006.09.005
  • Huggel C., Schneider D., Julio Miranda P., Delgado Granados H., Kääb A. Evaluation of ASTER and SRTM DEM data for lahar modeling: a case study on lahars from Popocatépetl Volcano, Mexico. Journal of Volcanology and Geothermal Research 170(1): 99–110. DOI: 10.1016/j.jvolgeores.2007.09.005.
  • Hunsaker C.T., Levine A., Timmins S.P., Jackson B.L., O’Neill R.V., 1992. Landscape characterization for assessing regional water quality. In: McKenzie, D.H., Hyatt, D.E., McDonald, V.J. (eds), Ecological Indicators. Elsevier, New York: 997–1006.
  • Irvin B.J., Ventura S.J., Slater B.K., 1997. Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma 77: 137–154. DOI: 10.1016/S0016-7061(97)00019-0.
  • Isachenko A.G., 1991. Landscape study and physical and geographical divisions into regions. Visshaya Shkola, Moscow.
  • Iwahashi J., Pike R.J., 2007. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 86: 409–440. DOI: 10.1016/j.geomorph.2006.09.012.
  • Kellndorfer J., Walker W., Pierce C., Dobson D., Fites J.A., Hunsaker C., Vona, J., Clutter, M., 2004. Vegetation height estimation from shuttle radar topography mission and national elevation datasets. Remote Sensing of Environment 93: 339–358. DOI: 10.1016/j.rse.2004.07.017.
  • Lastochkin A.N., 1991. Relief of the earth surface (Principles and methods of static geomorphology). Nedra, Leningrad.
  • Lloyd S.P., 1957. Least squares quantization in PCM. Bell Telephone Laboratories Paper.
  • Lloyd S.P., 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2): 129–137. DOI: 10.1109/TIT.1982.1056489.
  • Ludwig R., Schneider P., 2006. Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling. ISPRS Journal of Photogrammetry and Remote Sensing 60: 339–358. DOI: 10.1016/j.isprsjprs.2006.05.003.
  • Lindsay J. B. 2014. The Whitebox Geospatial Analysis Tools project and open-access GIS. In: Proceedings of the GIS Research UK 22nd Annual Conference, The University of Glasgow, 16–18 April. DOI: 10.13140/RG.2.1.1010.8962
  • MacMillan R.A., Pettapiece W.W., Nolan S.C., Goddard T.W., 2000. A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems 113: 81–109. DOI: 10.1016/S0165-0114(99)00014-7.
  • MacMillan R.A., Shary P.A., 2009. Landforms and landform elements in geomorphometry. Developments in soil science 33: 227–254. DOI: 10.1016/S0166-2481(08)00009-3.
  • MacQueen J., 1967. Some methods for classification and analysis of multivariate observations. In: Proc. 5th Berkeley Symp. on Math. Statistics and Probability: 281–297.
  • Mitasova H., Hofierka J., 1993. Interpolation by regularized spline with tension: II. Application to terrain modeling and surface geometry analysis. Mathematical Geology 25(6): 657–669. DOI: 10.1007/BF00893172.
  • Moravej K., Karimian Eghbal M., Toomanian N., Shahla Mahmoodi S., 2012. Comparison of automated and manual landform delineation in semi detailed soil survey procedure. African Journal of Agricultural Research 17(7): 2592–2600. DOI: 10.5897/AJAR11.728.
  • Orhan U., Hekim M., Ibrikci T., 2008. Gravitational fuzzy clustering. Lecture Notes in Artificial Intelligence 5317: 524–531. DOI: 10.1007/978-3-540-88636-5_50.
  • Pennock D.J., Zebarth B.J., de Jong E., 1987. Landform classification and soil distribution in hummocky terrain. Geoderma 40(3–4): 297–315. DOI: 10.1016/0016-7061(87)90040-1.
  • Piloyan A., Avagyan, A. 2016. The Circular Structures of the Republic of Armenia Based on a Digital Elevation Model. European Journal of Geography 7(3): 57–69.
  • Prima O.D.A., Echigo A., Yokoyama R., Yoshida T., 2006. Supervised landform classification of Northeast Honshu from DEM-derived thematic maps. Geomorphology 78: 373–386. DOI: 10.1016/j.geomorph.2006.02.005.
  • Rabus B., Eineder M., Roth A., Bamler R., 2003. The shuttle radar topography mission – a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing 57: 241–262. DOI: 10.1016/S0924-2716(02)00124-7
  • Rodriguez E., Morris C., Belz J., Chapin E., Martin J., Daffer W., Hensley S., 2005. An assessment of the SRTM topographic products. In: Technical Report JPL D-31639. Jet Propulsion Laboratory. Pasadena, California.
  • Schillaci C., Braun A., Kropáček J. Terrain analysis and landform recognition. In: Clarke L., Nield J. (eds), Geomorphological Techniques. British Society for Geomorphology: 1–18. DOI: 10.13140/RG.2.1.3895.2802.
  • Shary P.A, 1995. Land surface in gravity points classification by a complete system of curvatures. Mathematical Geology 27: 373–390. DOI: 10.1007/BF02084608
  • Shary P.A., Sharaya L.S., Mitusov A.V., 2002. Fundamental quantitative methods of land surface analysis. Geoderma 107: 1–32. DOI: 10.1016/S0016-7061(01)00136-7
  • Schmidt J. Hewitt A., 2004. Fuzzy land element classification from DTMs based on geometry and terrain position. Geoderma 121: 243–256. DOI:10.1016/j.geoderma.2003.10.008.
  • Simonov Yu. G., 1999. The explanatory morphometry of the relief. GEOS, Moscow.
  • Steinhaus H., 1956. Sur la division des corps materiels en parties. Bull. Acad. Polon. Sci. 6: 801–804.
  • Stepinski T.F., Vilalta R., 2005. Digital topography models for Martian surfaces. IEEE Geoscience and Remote Sensing Letters 2(3): 260–264. DOI: 10.1109/LGRS.2005.848509.
  • Stevens N.F., Garbeil H., Mouginis-Mark P.J., 2004. NASA EOS Terra ASTER: Volcanic topographic mapping and capability. Remote Sensing of Environment 90: 405–414. DOI: 10.1016/j.rse.2004.01.012.
  • Townshend J.R.G., 1981. Terrain Analysis and Remote Sensing. George Allen and Unwin, London.
  • Turner M.G., 1990. Spatial and temporal analysis of landscape pattern. Landscape Ecology 4(1): 21–30. DOI: 10.1007/BF02573948.
  • Ventura S., Irvin B., 2000. Automated Landform Classification Methods for Soil Landscape Studies. In: Wilson J.P., Gallant J.C. (eds.), Terrain Analysis Principals and Applications. John Wiley and Sons, New York: 245–294.
  • Vriend S.P., van Gaans P.F.M., Middelburg J., de Nijs A., 1988. The application of fuzzy c-means cluster analysis and non-linear mapping to geochemical datasets: examples from Portugal. Applied Geochemistry 3(2): 213–224. DOI: 10.1016/0883-2927(88)90009-1.
  • Wood J., 1996. The Geomorphological Characterisation of Digital Elevation Models. Ph.D. Thesis. University of Leicester, England. Online: https://lra.le.ac.uk/handle/2381/34503 (accessed 23 April 2016)
  • Wright R., Garbeil H., Baloga S.M., Mouginis-Mark P.J., 2006. An assessment of shuttle radar topography mission digital elevation data for studies of volcano morphology. Remote Sensing of Environment 105(1): 41–53. DOI: 10.1016/j.rse.2006.06.002.
  • Zavoianu I., Cruceru N., Heritanu G., 2013. Morphometry elements of hydrographic basins with use in the characterization of relief. Revista de Geomorfologie 15: 89–98.
  • Zohrabyan L.N., 1979. Orography of the Armenian Highland (experiment in orographical analysis of morphostructure). Arm. SSR NAS Press, Yerevan.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8ac647ce-6543-49d3-a382-3d29a2819566
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.