PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 63 | 3 |

Tytuł artykułu

Evaluation of inhibitory effect of redox-active antimalarial drug against Babesia microti in mice

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Babesiosis is an emerging, tick-transmitted disease caused by the intraerythrocytic parasite Babesia microti. In immunocompetent individuals, B. microti infection quickly resolves after antibabesial treatment. Immunocompromised patients and those of advanced age experience chronic and relapsing babesiosis, accompanied by severe complications and often, a fatal outcome. In these individuals, B. microti infection may persist despite multiple courses of treatment with antiprotozoal drugs. The increasing incidence of human babesiosis caused by B. microti, coupled with a growing number of immunosuppressed people who do not respond to standard antibabesial therapy, emphasises the need for new therapeutics for this protozoan infection with more effective mechanisms of action. Plasmodione, namely 3-[4-(trifluoromethyl)benzyl]-menadione, acts as a redox cycler and disrupts the redox homeostasis of Plasmodium-infected erythrocytes. The present study was designed to evaluate the potential inhibitory effect of this novel antimalarial compound against intraerythrocytic stages of B. microti in mice. Our results demonstrate that plasmodione did not reduce the level of parasitemia in B. microti-infected mice, indicating that interfering with the parasite redox balance is not an effective strategy to restrict the division of this protozoan. The mechanism of parasite resistance to plasmodione may be based on the differences in the oxidative metabolisms of Babesia and Plasmodium parasites inside infected erythrocytes. The significance of our results is discussed in relation to the development of novel antibabesial drugs based on redox-active benzylmenadiones.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

3

Opis fizyczny

p.223-227,fig.,ref.

Twórcy

autor
  • Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
autor
  • Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
  • Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland

Bibliografia

  • [1] Homer M.J., Aguilar-Delfin I., Telford III S.R., Krause P.J., Persing D.H. 2000. Babesiosis. Clinical Microbiology Reviews 13: 451-469. doi:10.1128/cmr.13.3.451-469.2000
  • [2] Hunfeld K.-P., Hildebrandt A., Gray J.S. 2008. Babesiosis: recent insights into an ancient disease. International Journal for Parasitology 38: 1219-1237. doi:10.1016/j.ijpara.2008.03.001
  • [3] Krause P.J., Gewurz B.E., Hill D., Marty F.M., Vannier E., Foppa I.M., Furman R.R., Neuhaus E., Skowron G., Gupta S., McCalla C., Pesanti E.L., Young M., Heiman D., Hsue G., Gelfand J.A., Wormser G.P., Dickason J., Bia F.J., Hartman B., Telford III S.R., Christianson D., Dardick K., Coleman M., Girotto J.E., Spielman A. 2008. Persistent and relapsing babesiosis in immunocompromised patients. Clinical Infectious Diseases 46: 370-376. doi:10.1086/525852
  • [4] Wormser G.P., Prasad A., Neuhaus E., Joshi S., Nowakowski J., Nelson J., Mittleman A., Aguero-Rosenfeld M., Topal J., Krause P.J. 2010. Emergence of resistance to azithromycin-atovaquone in immunocompromised patients with Babesia microti infection. Clinical Infectious Diseases 50: 381-386. doi:10.1086/649859
  • [5] Müller T., Johann L., Jannack B., Brückner M., Lanfranchi D.A., Bauer H., Sanchez C., Yardley V., Deregnaucourt C., Schrével J., Lanzer M., Schirmer R.H., Davioud-Charvet E. 2011. Glutathione reductase-catalyzed cascade of redox reactions to bioactivate potent antimalarial 1,4-naphthoquinones a new strategy to combat malarial parasites. Journal of the American Chemical Society 133: 11557-11571.doi:10.1021/ja201729z
  • [6] Ehrhardt K., Deregnaucourt C., Goerz A.-A., Tzanova T., Gallo V., Arese P., Pradines B., Adjalley S.H., Bagrel D., Blandin S., Lanzer M., Davioud-Charvet E. 2016. The redox cycler plasmodione is a fast-acting antimalarial lead compound with pronounced activity against sexual and early asexual blood-stage parasites. Antimicrobial Agents and Chemotherapy 60: 5146-5158. doi:10.1128/aac.02975-15
  • [7] Krause P.J., Daily J., Telford S.R., Vannier E., Lantos P., Spielman A. 2007. Shared features in the pathobiology of babesiosis and malaria. Trends in Parasitology 23: 605-610. http://dx.doi.org/10.1016/j.pt.2007.09.005
  • [8] Clark I.A., Jacobson L.S. 1998. Do babesiosis and malaria share a common disease process? Annals of Tropical Medicine and Parasitology 92: 483-488. http://dx.doi.org/10.1080/00034983.1998.11813306
  • [9] Shih C.M., Wang C.C. 1998. Ability of azithromycin in combination with quinine for the elimination of babesial infection in humans. The American Journal of Tropical Medicine and Hygiene 59: 509-512. https://doi.org/10.4269/ajtmh.1998.59.509
  • [10] Krause P.J., Lepore T., Sikand V.K., Gadbaw J., Burke G., Telford S.R., Brassard P., Pearl D., Azlanzadeh J., Christianson D., McGrath D., Spielman A. 2000. Atovaquone and azithromycin for the treatment of babesiosis. The New England Journal of Medicine 343: 1454-1458. doi:10.1056/nejm200011163432004
  • [11] Vyas J.M., Telford S.R., Robbins G.K. 2007. Treatment of refractory Babesia microti infection with atovaquone-proguanil in an HIV-infected patient: case report. Clinical Infectious Disease 45: 1588-1590. doi:10.1086/523731
  • [12] Bielitza M., Belorgey D., Ehrhardt K., Johann L., Lanfranchi D.A., Gallo V., Schwarzer E., Mohring F., Jortzik E., Williams D.L., Becker K., Arese P., Elhabiri M, Davioud-Charvet E. 2015. Antimalarial NADPH-consuming redox-cyclers as superior glucose-6-phosphate dehydrogenase deficiency copycats. Antioxidants and Redox Signaling 22: 1337-1351. doi:10.1089/ars.2014.6047
  • [13] Rudzinska M.A. 1976. Ultrastructure of intraerythro cytic Babesia microti with emphasis on the feeding mechanism. Journal of Protozoology 23: 224-233. doi:10.1111/j.1550-7408.1976.tb03759.x
  • [14] Regner E.L., Thompson C.S., Iglesias A.A., Guerrero S.A., Arias D.G. 2014. Biochemical characterization of thioredoxin reductase from Babesia bovis. Biochimie 99: 44-53. https://doi.org/10.1016/j.biochi.2013.11.002
  • [15] Schirmer R.H, Coulibaly B., Stich A., Scheiwein M., Merkle H., Eubel J., Becker K., Becher H., Müller O., Zich T., Schiek W., Kouyaté B. 2003. Methylene blue as an antimalarial agent. Redox Report 8: 272-275. http://dx.doi.org/10.1179/135100003225002899
  • [16] Pascual A., Henry M., Briolant S., Charras S., Baret E., Amalvict R., Huyghues des Etages E., Feraud M., Rogier C., Pradines B. 2011. In vitro activity of Proveblue (methylene blue) on Plasmodium falciparum strains resistant to standard antimalarial drugs. Antimicrobial Agents and Chemotherapy 55: 2472-2474. doi:10.1128/AAC.01466-10
  • [17] Dormoi J., Pradines B. 2013. Dose responses of Proveblue methylene blue in an experimental murine cerebral malaria model. Antimicrobial Agents and Chemotherapy 57: 4080-4081. doi:10.1128/aac.00634-13
  • [18] Umbreit J. 2007. Methemoglobin – it’s not just blue: a concise review. American Journal of Hematology 82: 134-144. doi:10.1002/ajh.20738
  • [19] Dormoi J., Pascual A., Briolant S., Amalvict R., Charras S., Baret E., Huyghues des Etages E., Feraud M., Pradines B. 2012. Proveblue (methylene blue) as an antimalarial agent: in vitro synergy with dihydroartemisinin and atorvastatin. Antimicrobial Agents and Chemotherapy 56: 3467-3469. doi:10.1128/aac.06073-11
  • [20] Coulibaly B., Pritsch M., Bountogo M., Meissner P.E., Nebié E., Klose C., Kieser M., Berens-Riha N., Wieser A., Sirima S.B., Breitkreutz J., Schirmer R.H., Sié A., Mockenhaupt F.P., Drakeley C., Bousema T., Müller O. 2015. Efficacy and safety of triple combination therapy with artesunate-amodiaquinemethylene blue for falciparum malaria in children: a randomized controlled trial in Burkina Faso. Journal of Infectious Diseases 211: 689-697. https://doi.org/10.1093/infdis/jiu540
  • [21] Held J., Jeyaraj S., Kreidenweiss A. 2015. Antimalarial compounds in phase II clinical development. Expert Opinion on Investigational Drugs 24: 363-382. doi:10.1517/13543784.2015.1000483
  • [22] Tuvshintulga B., Sivakumar T., Salama A.A., Yokoyama N., Igarashi I. 2015. Evaluation of inhibitory effect of methylene blue against Babesia and Theileria parasites. Journal of Protozoology Research 25: 18-28.
  • [23] Blank O., Davioud-Charvet E., Elhabiri M. 2012. Interactions of the antimalarial drug methylene blue with methemoglobin and heme targets in Plasmodium falciparum: a physico-biochemical study. Antioxidants and Redox Signaling 17: 544-554. doi:10.1089/ars.2011.4239
  • [24] Machtinger L., Telford III S.R., Inducil C., Klapper E., Pepkowitz S.H., Goldfinger D. 1993. Treatment of babesiosis by red blood cell exchange in an HIVpositive, splenectomized patient. Journal of Clinical Apheresis 8: 78-81. doi:10.1002/jca.2920080205
  • [25] Evenson D.A., Perry E., Kloster B., Hurley R., Stroncek D.F. 1998. Therapeutic apheresis for babesiosis. Journal of Clinical Apheresis 13: 32-36. doi:10.1002/(sici)1098-1101(1998)13:1
  • [26] Tanyel E., Guler N., Hokelek M., Ulger F., Sunbul M. 2015. A case of severe babesiosis treated successfully with exchange transfusion. International Journal of Infectious Diseases 38: 83-85. http://dx.doi.org/10.1016/j.ijid.2015.07.019

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8ab7b515-3e9d-45df-b42a-b073e184e30c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.