PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 72 | 1 |

Tytuł artykułu

Neural generators of the auditory evoked potential components P3a and P3b

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the present study was to define the scalp topography of the two subcomponents of the P3 component of the auditory evoked potential elicited in a three-stimulus oddball paradigm and to identify their cortical generators using the standardized low resolution electromagnetic tomography (sLORETA). Subjects were presented with a random sequence of auditory stimuli and instructed to respond to an infrequently occurring target stimulus inserted into a sequence of frequent standard and rare non-target stimuli. Results show that the magnitude of the frontal P3a is determined by the relative physical difference among stimuli, as it was larger for the stimulus more deviant from the standard. Major neural generators of the P3a were localized within frontal cortex and anterior cingulate gyrus. In contrast to this, the P3b, showing maximal amplitude at parietal locations, was larger for stimuli demanding a response than for the rare non-target. Major sources of the P3b included the superior parietal lobule and the posterior part of the cingulate gyrus. Our findings are in line with the hypothesis that P3a is related to alerting activity during the initial allocation of attention, while P3b is related to activation of a posterior network when the neuronal model of perceived stimulation is compared with the attentional trace.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

72

Numer

1

Opis fizyczny

p.51-64,fig.,ref.

Twórcy

autor
  • Psychophysilogy Laboratory, Institute of Psychology, Jgiellonian University, Krakow, Poland
  • Department of Biological Psychology, Radboud University Nijmegen, Nijmegen, The Nitherlands
autor
  • Psychophysilogy Laboratory, Institute of Psychology, Jgiellonian University, Krakow, Poland
  • Department of Biological Psychology, Radboud University Nijmegen, Nijmegen, The Nitherlands

Bibliografia

  • Anderer P, Saletu B, Semlitsch HV, Pascual-Marqui RD (2003) Non-invasive localization of P300 sources in nor¬mal aging and age-associated memory impairment. Neurobiol Aging 24: 463-479.
  • Alho K, Winkler I, Escera C, Huotilainen M, Virtanen J, Jaaskelainen IP, Pekkonen E, Ilmoniemi RJ (1998) Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic record¬ings. Psychophysiology 35: 211-224.
  • Barcelo F, Suwazano S, Knight RT (2000) Prefrontal modu¬lation of visual processing in humans. Nat. Neurosci. 3: 399-403.
  • Barry RJ, Rushby JA (2006) An orienting reflex perspective on anteriorisation of the P3 of the event-related potential. Exp Brain Res 173: 539-545.
  • Baudena P, Halgren E, Heit G, Clarke J (1995) Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroenceph Clin Neurophysiol 94: 251-264.
  • Bledowski C, Prvulovic D, Goebel R, Zanella FE, Linden DEJ (2004) Attentional systems in target and distractor processing: a combined ERP and fMRI study. Neuroimage 22: 530-540.
  • Bocquillon P, Bourriez J-L, Palmero-Soler E, Betrouni N, Houdayer E, Derambure P, Dujardin K (2011) Use of swLORETA to localize the cortical sources of target- and distracter-elicited P300 components. Clin Nerophysiol 122: 1991-2002.
  • Brett M, Johnsrude IS, Owen AM (2002) The problem of functional localization in the human brain. Nat Rev Neurosci 3: 243-249.
  • Comerchero MD, Polich J (1999) P3a and P3b from typical auditory and visual stimuli. Clin Neurophysiol 110: 24-30.
  • Courchesne E, Hillyard SA, Galambos R (1975) Stimulus novelty, task relevance and the visual evoked potential in man. Electroenceph Clin Neurophysiol 39: 131-143.
  • Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating. Behav Brain Sci 11: 357-374.
  • Ebmeier KP, Steele JD, MacKenzie DM, O'Carroll RE, Kydd RR, Glabus MF, Blackwood DHR, Rugg MD, Goodwin GM (1995) Cognitive brain potentials and regional cerebral blood flow equivalents during two- and three-sound auditory ''oddball tasks''. Electroencephalogr Clin Neurophysiol 95: 434-443.
  • Fabiani M, Friedman D (1995) Changes in brain activity patterns in aging: the novelty oddball. Psychophysiology 32: 579-594.
  • Friedman D, Simpson G, Hamberger M (1993) Age-related changes in scalp topography to novel and target stimuli. Psychophysiology 30: 383-396.
  • Friedman D, Simpson GV (1994) ERP amplitude and scalp distribution to target and novel events: Effects of tempo¬ral order in young, middle-aged and older adults. Cogn Brain Res 2: 49-63.
  • Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113: 702-712.
  • Gratton G, Coles MGH, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroenceph Clin Neurophysiol 55: 468-484.
  • Halgren E, Baudena P, Clarke J, Heit G, Liegeois C, Chauvel P, Musolino A (1995a) Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroenceph Clin Neurophysiol 94: 191-220.
  • Halgren E, Baudena P, Clarke J, Heit G, Marinkovic K, Devaux B, Vignal, J-P, Biraben A (1995b) Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroenceph Clin Neurophysiol 94: 229-250.
  • Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface- based positioning systems. NeuroImage 34: 1600-1611.
  • Katayama J., Polich J (1998) Stimulus context determines P3a and P3b. Psychophysiology 35: 23-33.
  • Katayama J, Polich J (1999) Auditory and visual P300 topography from a 3 stimulus paradigm. Clin Neurophysiol 110: 463-468.
  • Kiehl KA, Laurens KR, Duty TL, Forster BB, Liddle PF (2001) Neural sources involved in auditory target detec¬tion and novelty processing: an event-related fMRI study. Psychophysiology 38: 133-142.
  • Kirino E, Belger A, Goldman-Rakic P, McCarthy G (2000) Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: an event- related functional magnetic resonance imaging study. J Neurosci 20: 6612-6618.
  • Kok A (2001) On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 38: 557-577.
  • Knight RT (1984) Decreased response to novel stimuli after prefrontal lesions in man. Electroenceph Clin Neurophysiol 59: 9-20.
  • Knight RT (1996) Contribution of human hippocampal region to novelty detection. Nature 383: 256-259.
  • Knight RT, Scabini D, Woods D, Clayworth C (1989) Contributions of temporal parietal junction to the human auditory P3. Brain Res 502: 109-116.
  • Knight RT, Grabowecky M, Scabini D (1995) Role of human prefrontal cortex in attention control. Adv Neurol 66: 21-34.
  • Kutas M, McCarthy G, Donchin E (1977) Augmenting men¬tal chronometry: The P300 as a measure of stimulus evaluation time. Science 197: 792-795.
  • Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach Atlas labels for functional brain mapping. Hum Brain Mapp 10: 120¬131.
  • Li Y, Wang LQ, Hu Y (2009) Localizing P300 generators in high-density event- related potential with fMRI. Med Sci Monit 15: MT47-53.
  • Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Le Goualher G, Boomsma D, Cannon T, Kawashima R, Mazoyer B (2001) A probabi¬listic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356: 1293-1322.
  • McCarthy G, Luby M, Gore J, Goldman-Rakic P (1997) Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. J Neurophysiol 77: 1630-1634.
  • Mecklinger A, Ullsperger P (1995) What makes a category a category? ERP correlates of stimulus-to-category assign¬ments. Electroencephalogr Clin Neurophysiol Suppl 44: 255-260.
  • Menon V, Ford JM, Lim KO, Glover GH, Pfefferbaum A (1997) Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport 8: 3029-3037.
  • Mulert C, Pogarell O, Juckel G, Rujescu D, Giegling I, Rupp D, Mavrogiorgou P, Bussfeld P, Gallinat J, Moller HJ, Hegerl U (2004) The neural basis of the P300 potential. Focus on the time-course of the underlying cortical gen¬erators. Eur Arch Psychiatry Clin Neurosci 254: 190-198.
  • Naatanen R (1990) The role of attention in auditory informa¬tion processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13: 201-287.
  • Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3, and the Locus Coerulesus-Norepinephrine system. Psychol Bull 131: 510-532.
  • Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with exam¬ples. Hum Brain Mapp 15: 1-25.
  • Nuwer MC, Comi G, Emerson R, Fugslang-Frederiksen A, Guerit J-M, Hinrichs H, Ikeda A, Luccas FJC, Rappelsburger P (1998) IFCN standards for digital recording of clinical EEG. Electroenceph Clin Neurophysiol 106: 259-261.
  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Method Find Exp Clin Pharmacol 24: 5-12.
  • Pascual-Marqui RD (2007) Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv:0710.3341 [math- ph], http://arxiv.org/abs/0710.3341
  • Pascual-Marqui RD (2009) Theory of the EEG inverse prob¬lem. In: Quantitative EEG Analysis Methods and Clinical Applications (Tong S, Thankor NV, Eds). Artech House, Boston, MA, p. 121-140.
  • Polich J (1988) Bifurcated P300 peaks: P3a and P3b revis¬ited? J Clin Neurophysiol 5: 287-294.
  • Polich J (1998) P300 clinical utility and control of variabil¬ity. J Clin Neurophysiol 15: 14-33.
  • Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118: 2128-2148.
  • Polich J, Criado JR (2006) Neuropsychology and neurophar¬macology of P3a and P3b. Int J Psychophysiol 60: 172¬185.
  • Potts G, Liotti M, Tucker D, Posner MI (1996) Frontal and inferior temporal cortical activity in visual target detec¬tion: evidence from high spatially sampled event-related potentials. Brain Topogr 9: 3-14.
  • Verbaten M, Huyben M, Kemner C (1997) Processing capacity and the frontal P3. Int J Psychophysiol 25: 237-248.
  • Verleger R, Heide W, Butt C, Kompf D (1994) Reduction of P3b in patients with temporo-parietal lesions. Cogn Brain Res 2: 103-116.
  • Volpe U, Mucci A, Bucci P, Merlotti E, Galderisi S, Maj M (2007) The cortical generators of P3a and P3b: A LORETA study. Brain Res Bull 73: 220-230.
  • Wang J, Tang Y, Li C, Mecklinger A, Xiao Z, Zhang M, Hirayasu Y, Hokama H, Li H (2010) Decreased P300 cur¬rent source density in drug-naive first episode schizo¬phrenics revealed by high density recording. Int J Psychophysiol 75: 249-257.
  • Wronka E, Kuniecki M, Kaiser J, Coenen AML (2007) The P3 produced by auditory stimuli presented in a passive and active condition: modulation by visual stimuli. Acta Neurobiol Exp (Wars) 67: 155-164.
  • Wronka E, Kaiser J, Coenen AML (2008) The auditory P3 from passive and active three-stimulus oddball paradigm Acta Neurobiol Exp (Wars) 68: 362-372.
  • Yamaguchi S, Knight RT (1991a) P300 generation by novel somatosensory stimuli. Electroenceph Clin Neurophysiol 78: 50-55.
  • Yamaguchi S, Knight RT (1991b) Age effects on the P300 to novel somatosensory stimuli. Electroenceph Clin Neurophysiol 78: 297-301.
  • Yamaguchi S, Knight RT (1991c) Anterior and posterior association cortex contributions to the somatosensory P300. J Neurosci 11: 2039-2054.
  • Yao J, Dewald JPA (2005) Evaluation of different cortical source localization methods using simulated and experi¬mental EEG data. Neuroimage 25: 369-382.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8a895089-c624-4069-8d4c-39080f934098
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.