PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 2 |

Tytuł artykułu

Comparing bacterial diversity in two full-scale enhanced biological phosphate removal reactors using 16S amplicon pyrosequencing

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Despite their stability and the widespread use of enhanced biological phosphorus removal (EBPR), little is known about their microbial composition and activity. In our study we investigated highthroughput pyrosequencing of bacterial communities from two full-scale EBPR reactors of South Africa. Findings indicated that both EBPRs harboured high bacterial similarity, ranging from 83 to 100% with a diverse community dominated by Proteobacteria (57.04 to 79.48% for failed EBPR and 61.7 to 85.39% for successful EBPR) throughout the five selected treatment zones with the exception of the fermenter (Bacteroidetes: 55.84%) from the successful EBPR. However, a lower dissimilarity was observed with the presence of 70 unique bacterial genera from successful EBPRs belonging to Gammaproteobacteria, Betaproteobacteria, and Actinobacteria, while 69 unique genera from failed EBPR belonged to Alphaproteobacteria, Betaproteobacteria, and Clostridia. The failed EBPR (54.58%) revealed less fermenting bacteria in the fermenter as compared to the successful EBPR (73.58%). More detrimental organisms and less nitrifying/denitrifying bacteria were also found in failed EBPR than in the successful EBPR, as well as phosphate-accumulating bacteria. Canonical correspondence analysis (CCA) displayed a very low relationship between microbial patterns, pH and DO – suggesting that these environmental factors played a major role in community dissimilarity. Aerobic zones appeared to have the highest dissimilarity between both EBPRs, with the failed EBPR predominated by Acidovorax (26.2%) and the successful EBPR with unclassified Rhodocyclaceae (37.24%). Furthermore, 21.47% of readings (failed EBPR) and 17.18% of readings (successful EBPR) could not be assigned to taxonomic classifications, highlighting the high diversity level of novel microbial species in such an environment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

2

Opis fizyczny

P.709-745,fig.,ref.

Twórcy

autor
  • Department of Environmental Sciences, University of South Africa, PO Box 392 UNISA 0003
autor
  • Department of Environmental Sciences, University of South Africa, PO Box 392 UNISA 0003
autor
  • Department of Environmental Sciences, University of South Africa, PO Box 392 UNISA 0003

Bibliografia

  • 1. KAMIKA I., MOMBA M.N.B. Comparing the tolerance limit of selected bacterial and protozoan species to nickel in wastewater systems. Sci. Total Environ. 400, 172, 2011.
  • 2. TEKLEHAIMANOT G.Z., KAMIKA I., COETZEE M.A.A., MOMBA M.N.B. Population growth and its impact on the design capacity and performance of the wastewater treatment plants in Sedibeng and Soshanguve, South Africa. Environ Manag. 56 (4), 984, 2015.
  • 3. BAI Y., ZHANG Y., QUAN X., CHEN S. Nutrient removal performance and microbial characteristics of a full-scale IFAS-EBPR process treating municipal wastewater. Water Sci Technol. 73 (6), 1261, 2016.
  • 4. ALBERTSEN M., HANSEN L.B.S., SAUNDERS A.M.S., NIELSEN P.H., NIELSEN K.L. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J 6, 1094, 2012.
  • 5. KAMIKA I., COETZEE M., MAMBA B.B., MSAGATI T., MOMBA M.N.B. The Impact of Microbial Ecology and Chemical Profile on the Enhanced Biological Phosphorus Removal (EBPR) Process: A Case Study of Northern Wastewater Treatment Works, Johannesburg. Int. J. Environ. Res. Public Health 11, 2876, 2014.
  • 6. CLOETE T.E., STEYN P.L. A combined fluorescent antibody membrane filter technique for enumerating Acinetobacter in activated sludges. In Biological phosphate removal from wastewater; Ramadori R. Ed., Pergamon: Oxford, UK, 335, 1987.
  • 7. SEVIOUR R.J., MINO T., ONUKI M. The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol. Rev. 27, 99, 2003.
  • 8. BOND P.L., HUGENHOLTZ P., KELLER J., BLACKALL L.L. Bacterial community structures of phosphateremoving and non-phosphate-removing activated sludges from sequencing batch reactors. Appl. Environ. Microbiol. 61, 1910, 1995.
  • 9. NGUYEN H.T.T., LE V.Q., HANSEN A.A., NIELSEN J.L., NIELSEN P.H. High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems. FEMS Microbiol Ecol. 76, 256, 2011.
  • 10. WANG X., XIA Y., WEN X., YANG Y., ZHOU J. Microbial Community Functional Structures in Wastewater Treatment Plants as Characterized by GeoChip. PLoS One 9 (3), e93422, 2014. doi:10.1371/journal.pone.0093422
  • 11. KUNIN V., COPELAND A., LAPIDUS A., MAVROMATIS K., HUGENHOLTZ P. A bioinformatician’s guide to metagenomics. Microbiol Mol Biol Rev. 72, 557, 2008.
  • 12. BROWN M.V., PHILIP G.K., BUNGE J.A., SMITH M.C., BISSETT A., LAURO F.M., FUHRMAN J.A., DONACHIE S.P. Microbial community structure in the North Pacific Ocean. ISME J. 3, 1374, 2009.
  • 13. WANG X., HU M., XIA Y., WEN X., DING K. Pyrosequencing Analysis of Bacterial Diversity in 14 Wastewater Treatment Systems in China. Appl. Environ. Microbiol. 78 (19), 7042, 2012.
  • 14. MONTEIRO M.I.C., FERREIRA F.N., OLIVEIRA N.M.M., AVILA A.K. Simplified version of the sodium salicylate method for nitrate analysis in drinking waters. Anal. Chim. Acta. 477 (1), 125, 2003.
  • 15. APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, 2001.
  • 16. SCHLOSS P.D., WESTCOTT S.L., RYABIN T., HALL J.R., HARTMANN M., HOLLISTER E.B., LESNIEWSKI R.A., OAKLEY B.B., PARKS D.H., ROBINSON C.J., SAHL J.W., STRES B., THALLINGER G.G., VAN HORN D.J., WEBER C.F. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 75 (23), 7537, 2009.
  • 17. EDGAR R.C., HAAS B.J., CLEMENTE J.C., QUINCE C., KNIGHT R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 (16), 2194, 2011.
  • 18. COLE J.R., WANG Q., FISH J.A., CHAI B., MCGARRELL D.M., SUN Y., BROWN C.T., PORRAS-ALFARO A., KUSKE. C.R., TIEDJE J.M. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucl. Acids Res. 42 (Database issue) D633, 2014.
  • 19. HAMMER Ø., HARPER D.A.T., RYAN P.D. Paleontological statistics software package for education and data analysis. Palaeontol Electronica 4 (1), 9, 2001.
  • 20. YE L., ZHANG T. Bacterial communities in different sections of a municipal wastewater treatment revealed by 16S rDNA pyrosequencing. Appl Microbiol Biotechnol 97 (6), 2681, 2013.
  • 21. LV X.M., SHAO M.F., LI C.L., GAO X.L., SUN F.Y. A comparative study of the bacterial community in denitrifying and traditional enhanced biological phos-phorus removal processes. Microbes Environ. 29 (3), 261, 2014.
  • 22. ZHOU J., HE Z., YANG Y., DENG Y., TRINGE S.C., ALVAREZ-COHEN L. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6 (1), e02288-14, 2015. doi:10.1128/mBio.02288-14.
  • 23. OULAS A., PAVLOUDI C., POLYMENAKOU P., PAVLOPOULOS G.A. PAPANIKOLAOU N., KOTOULAS G., ARVANITIDIS C., LLIOPOULOS L. Metagenomics: Tools and Insights for Analyzing Next- Generation Sequencing Data Derived from Biodiversity Studies. Bioinform Biol Insights. 9, 75, 2015.
  • 24. HAAS B.J., GEVERS D., EARL A.M., FELDGARDEN M., WARD D.V., GIANNOUKOS G., CIULLA D., TABBAA D., HIGHLANDER S.K. SODERGEN E., METHE B., DESANTIS T.Z., THE HUMAN MICROBIOME CONSORTIUM, PETROSINO J.F., KNIGHT R., BIRREN B.W. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21 (3), 494, 2011.
  • 25. NIELSEN P.H., MIELCZAREK A.T., KRAGELUND C., NIELSEN J.L., SAUNDERS A.M., KONG Y., HANSEN A.A., VOLLERTSEN J. A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res. 44 (17), 5070, 2010.
  • 26. GIRVAN M.S., CAMPBELL C.D., KILLHAM K., PROSSER J.I., GLOVER L.A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7, 301, 2005.
  • 27. SAIKALY P.E., OERTHER D.B. Diversity of dominant bacterial taxa in activated sludge promotes functional resistance following toxic shock loading. Microb Ecol 61, 557, 2011.
  • 28. RASHEED Z., RANGWALA H., BARBARÁ D. 16S rRNA metagenome clustering and diversity estimation using locality sensitive hashing. BMC Syst Biol 7, (4), S11, 2013.
  • 29. BENTO F.M., DE OLIVEIRA CAMARGO F.A., OKEKE B.C., FRANKENBERGER JR W.T. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 160 (3), 249, 2005.
  • 30. LEPRIEUR F., ALBOUY C., DE BORTOLI J., COWMAN P.F., BELLWOOD D.R., MOUILLOT D. Quantifying Phylogenetic Beta Diversity: Distinguishing between ‘True’ Turnover of Lineages and Phylogenetic Diversity Gradients. PLoS One 7 (8), e42760, 2012.
  • 31. ZHANG T., SHAO M.F., YE L. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 6 (6), 1137, 2012.
  • 32. LAWSON C.E., STRACHAN B.J., HANSON N.W., HAHN A.S., HALL E.R., RABINOWITZ B., MAVINIC D.S., RAMEY W.D., HALLAM S.J. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ. Microbiol. 17 (12), 4979, 2015.
  • 33. TIAN M., ZHAO F., SHEN X., CHU K., WANG J., CHEN S., GUO Y., LIU H. The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing. J. Environ. Sci. 181, 2015.
  • 34. JIN H., LI B., PENG X., CHEN L. Metagenomic analyses reveal phylogenetic diversity of carboxypeptidase gene sequences in activated sludge of a wastewater treatment plant in Shanghai, China. Ann Microbiol. 64 (2), 689, 2014.
  • 35. FENG C.J., ZHANG Z.J., WANG S.M., FANG F., YE Z.Y., CHEN S.H. Characterization of microbial community structure in a hybrid biofilm-activated sludge reactor for simultaneous nitrogen and phosphorus removal. J. Environ. Biol. 34, 489, 2013.
  • 36. MEEHAN C.J., BEIKO R.G. A Phylogenomic View of Ecological Specialization in the Lachnospiraceae, a Family of Digestive Tract-Associated Bacteria. Genome Biol Evol. 6 (3), 703, 2014.
  • 37. RANSOM-JONES E., JONES D.L., MCCARTHY A.J., MCDONALD J.E. The fibrobacteres: an important phylum of cellulose-degrading bacteria. Microbial Ecol 63, 267, 2012.
  • 38. CHRISTENSSON M., BLACKALL L.L., WELANDER T. Metabolic transformations and characterization of the sludge community in an enhanced biological removal system. Appl. Microbiol. Biotechnol. 49, 226, 1998.
  • 39. ALBERTSEN M., MCLLROY S.J., STOKHOLM-BJERREGAARD M., KARST S.M., NIELSEN P.H. “Candidatus Propionivibrio aalborgensis”: A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants. Front Microbiol. 7, 1033, 2016. DOI: 10.3389/fmicb.2016.01033 40. SIDAT M., BUX F., KASAN H.C. Polyphosphate accumulation by bacteria isolated from activated sludge. Water SA 25 (2), 175, 1999.
  • 41. REN Y., WEI C.H., XIAO K.J. Characterisation of microorganisms responsible for EBPR in a sequencing batch reactor by using the 16S rDNA-DGGE method. Water SA 33, 123, 2007.
  • 42. GONZALEZ-GIL G., HOLLIGER C. Dynamics of microbial community structure of and enhanced biological phosphorus removal by aerobic granules cultivated on propionate or acetate. Appl. Environ. Microbiol. 77 (22), 8041, 2011.
  • 43. SIEZEN R.J., GALARDINI M. Genomics of biological wastewater treatment. Microbial Biotechnol. 1 (5), 333, 2008.
  • 44. ONG Y.H., CHUA A.S.M., HUANG Y.T., NGOH G.C., YOU S.J. The microbial community in a high-temperature enhanced biological phosphorus removal (EBPR) process. Sustainable Environ Res. 26 (1), 14, 2016.
  • 45. FU B., LIAO X.Y., DING L.L., REN H.Q. Characterization of microbial community in an aerobic moving bed biofilm reactor applied for simultaneous nitrification and denitrification. World J. Microbiol. Biotechnol. 26 (11), 1981, 2010
  • 46. KONG Y., ONG S.L. NG W.J., LIU W.T. Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic - aerobic activated sludge processes. Environ. Microbiol. 4 (11), 753, 2002.
  • 47. MINO T. Microbial Selection of Polyphosphate-Accumulating Bacteria in Activated Sludge Wastewater Treatment Processes for Enhanced Biological Phosphate Removal. Biochemistry Mosc. 65 (3), 341, 2000.
  • 48. RASHED E.M., MASSOUD M. The effect of effective microorganisms (EM) on EBPR in modified contact stabilization system. HBRC J. 11 (3), 384, 2014.
  • 49. MULLAN A., QUINN J.P., MCGRATH J.W. Enhanced phosphate uptake and polyphosphate accumulation in Burkholderia cepacia grown under low-pH conditions. Microbial Ecol. 44, 69, 2002.
  • 50. MARTÍN H.G., IVANOVA N., KUNIN V., WARNECKE F., BARRY K.W., MCHARDY A.C., YEATES C., HE S., SALAMOV A.A., SZETO E., DALIN E., PUTNAM N.H., SHAPIRO H.J., PANGILINAN J.L., RIGOUTSOS I., KYRPIDES N.C., BLACKALL L.L., MCMAHON K.D., HUGENHOLTZ P. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nature Biotechnol. 24, 1263, 2006.
  • 51. LOZUPONE C.A., KNIGHT R. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 104, 11436, 2007.
  • 52. MOHAMED D.J., MARTINY J.B.H. Patterns of fungal diversity and composition along a salinity gradient. ISME J. 5, 379, 2011.
  • 53. SIGGINS A., ENRIGHT A.-M., O’FLAHERTY V. Temperature dependent (3715ºC) anaerobic digestion of a trichloroethylene-contaminated wastewater. Bioresour. Technol. 102 (17), 7645, 2011

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8a7b8060-e233-43d3-a96b-550004606d9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.