PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 1 |

Tytuł artykułu

Allelic isoforms of the chicken and duck histone H1.a

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Two isoforms of the erythrocyte histone H1.a were identified in two conservative flocks of Rhode Island Red chickens and six conservative flocks of ducks. The H1.a1 and H1.a2 isoforms formed three phenotypes (a1, a2 and a1a2) and were electrophoretically similar in the two species. The frequency of phenotype and histone H1.a allele occurrence varied within the genetic groups of birds, but the relatively rare allele a 2 was only detected in chicken and duck strains with colored feathers. Using mass spectrometry, we established that the difference between the measured masses of the duck H1.a isoforms was 156 Da. Since this value corresponds to the mass of the arginine residue alone or to the combined mass of the valine and glycine residues, we believe that the polymorphism of duck histone H1.a might have originated from sequence variation. A mass difference of 1 Da observed between chicken H1.a isoforms corresponded well to the previously detected Glu/Lys substitution (0.9414 Da) at position 117.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

1

Opis fizyczny

p.116-125,fig.,ref.

Twórcy

  • Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, ul.Swietokrzyska 15, 25-406 Kielce, Poland
autor
  • Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, ul.Swietokrzyska 15, 25-406 Kielce, Poland
autor
  • Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, ul.Swietokrzyska 15, 25-406 Kielce, Poland

Bibliografia

  • 1. Happel, N. and Doenecke, D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 431 (2009) 1–12.
  • 2. Fan, Y., Nikitina, T., Zhao, J., Fleury, T.J., Bhattacharyya, R., Bouhassira, E.E, Stein, A., Woodcock, C.L. and Skoultchi, A.I. Histone H1 depletion in mammals alter global chromatin structure but causes specific changes in gene regulation. Cell 123 (2005) 1199–1212.
  • 3. Terme, J-M., Sese, B., Millan-Arino, L., Mayor, R., Izpisua Belmonte, J.C., Barrero, M.J. and Jordan, A. Histone H1 variants are differently expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency. J. Biol. Chem. 286 (2011) 35347–35357.
  • 4. Parseghian, M.H. and Hamkalo, B.A. A compendium of the histone H1 family of somatic subtypes: An elusive cast of characters and their characteristics. Biochem. Cell. Biol. 79 (2001) 289–304.
  • 5. Izzo, A., Kamieniarz, K. and Schneider, R. The histone H1 family: specific members, specific functions? Biol. Chem. 389 (2008) 333–343.
  • 6. McBryant, S.J., Lu, X. and Hansen, J.C. Multifunctionality of the linker histones: an emerging role for protein–protein interactions. Cell. Res. 20 (2010) 519–528.
  • 7. Jerzmanowski, A. The linker histones, In: Zlatanova, J., Leuba, S., (Eds.), Chromatin structure & dynamics: State-of-the-Art. Elsevier Science BV, 2004, 75–102.
  • 8. Kowalski, A., Pałyga, J., Górnicka-Michalska, E. and Krajewska, W.M. Allelic polymorphism of histone H1.a in duck erythrocytes. Biochem. Genet. 36 (1998) 183–191.
  • 9. Górnicka-Michalska, E, Pałyga, J, Kowalski, A. and Cywa-Benko K. Sequence variants of chicken linker histone H1.a. FEBS J. 273 (2006) 1240–1250.
  • 10. Coles, L.S., Robins, A.J., Madley, L.K. and Wells, R.S. Characterization of the chicken histone H1 gene complement. Generation of a complete set of vertebrate H1 protein sequences. J. Biol. Chem. 262 (1987) 9656–9663.
  • 11. Pałyga, J., Górnicka-Michalska, E. and Kowalski, A. Genetic polymorphism of histone H1.z in duck erythrocytes. Biochem J. 294 (1993) 859–863.
  • 12. Kowalski, A. and Pałyga, J. High-resolution two-dimensional polyacrylamide gel electrophoresis: a tool for identification of polymorphic and modified linker histone components, In: Magdeldin S., (Ed.), Gel electrophoresis – Principles and Basics, In Tech, 2012, 117–136.
  • 13. Mizzen, C.A., Alpert, A.J., Levesque, L., Kruck, T.P.A. and McLachlan, D.R. Resolution of allelic and non-allelic variants of histone H1 by cationexchange-hydrophilic-interaction chromatography. J. Chromatogr. B 744 (2000) 33–46.
  • 14. Sarg, B., Green, A., Soderkvist, B., Helliger, W., Runquist, I. and Lindner, H. Characterization of sequence variations in human histone H1.2 and H1.4 subtypes. FEBS J. 272 (2005) 3673–3683.
  • 15. Ortiz, M.L., Calero, M., Fernandez Patron, C., Patron, C.F., Castellanos, L. and Mendez, L. Imidazole-SDS-Zn reverse staining of proteins in gels containing or not SDS and microsequence of individual unmodified electroblotted proteins. FEBS Lett. 296 (1992) 300–304.
  • 16. Cohen, S.L. and Chait, B.T. Mass spectrometry of whole proteins eluted from sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. Anal. Biochem. 247 (1997) 257–267.
  • 17. Villar-Garea, A. and Imhof, A. Fine mapping of posttranslational modifications of the linker histone H1 from Drosophila melanogaster. PLoS One (2008) e1553. doi:10.1371/journal.pone.00015531–11.
  • 18. Berdnikov, V.A., Bogdanova, V.S., Gorel, F.L., Kosterin, O.E. and Trusov, Y.A. Large changes in the structure of the major histone H1 subtype result in small effects on quantitative traits in legumes. Genetica 119 (2003) 67–182.
  • 19. Wisniewski, J.R., Zougman, A., Kruger, S. and Mann, M. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue. Mol. Cell. Proteomics 6 (2007) 72–87.
  • 20. Routh, A., Sandin, S. and Rhodes, D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc. Natl. Acad. Sci. USA 105 (2008) 8872–8877.
  • 21. Zlatanova, J., Caiafa, P. and van Holde, K. Linker histone binding and displacement: versatile mechanism for transcriptional regulation. FASEB J. 14 (2000) 1697–1704.
  • 22. Trollope, A., Sapojnikova, N., Thorne, A.W., Crane-Robinson, C. and Myers, F.A. Linker histone subtypes are not generalized gene repressors. Biochem. Biophys. Acta 1799 (2010) 642–652.
  • 23. Caterino, T.L., Fang, H. and Hayes, J.J. Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxylterminal domain. Mol. Cell. Biol. 31 (2011) 2341–2348.
  • 24. Hansen, J.C., Lu, X., Ross, E.D. and Woody, R.W. Intrinsic protein disorder, amino acid composition, and histone terminal domains. J. Biol. Chem. 281 (2006) 1853–18656.
  • 25. Lu, X., Hamkalo, B., Parseghian, M.H. and Hansen, J.C. Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder. Biochemistry 48 (2009) 164–172.
  • 26. Bogdanova, V.S., Lester, D.R., Berdnikov, V.A. and Andersson, I. Structure of allelic variants of subtype 5 of histone H1 in a pea Pisum sativum L. Heredity 94 (2005) 582–588.
  • 27. Bogdanova, V.S., Kosterin, O.E. and Berdnikov, V.A. Phenotypic effect of substitution of allelic variants for a histone H1 subtype specific for growing tissues in the garden pea (Pisum sativum L.). Genetica 130 (2007) 61–72.
  • 28. Pałyga, J., Górnicka-Michalska, E., Kowalski, A., Książkiewicz, J. Natural allelic variation of duck erythrocyte histone H1.b. Int. J. Biochem. Cell Biol. 32 (2000) 665–675.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-8a4bb16f-4127-47b0-9b70-51c4ab85b667
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.