Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 64 | 1 |
Tytuł artykułu

Plant food extracts as a source of bioactive compounds for prevention of cisplatin-induced kidney dysfunction in rats

Treść / Zawartość
Warianty tytułu
Języki publikacji
The present study investigated the protective effect of extracts prepared from grape, coriander, roselle and fennel in a rat model of kidney dysfunction induced by intraperitoneal cisplatin. A mixture of ethanol and petroleum ether extracts was prepared from a given plant. Six groups of rats were analyzed; control healthy, cisplatin group and 4 test groups where rats were given a daily oral dose of each extract mixture before cisplatin injection. Different biochemical and cytogenetic parameters and kidney histopathology were determined. Total phenolic contents, fatty acids and unsaponifiable matter (UNSAP) were assessed in the extracts. Results showed roselle ethanol extract to have the highest phenolic content (15.584 g GAE/100 g extract). Fatty acid analysis revealed the presence of linoleic and linolenic acid in all studied plants. Coriander oil showed the highest content of unsaturated fatty acids (85%). GLC investigation of the UNSAP showed the presence of campesterol in all the studied plants. Grape oil contained the highest content of phytosterol (15.9%). Cisplatin treatment induced significant increase in plasma urea, creatinine and malondialdehyde along with significant reduction in plasma albumin, total protein, catalase activity and total antioxidant level as well as reduction in creatinine clearance compared to normal control. Histopathological examination proved the induction of kidney dysfunction by cisplatin. Chromosomal aberration and sperm-shape abnormalities were noticed after cisplatin treatment. Administration of extract mixtures produced improvements in biochemical, histopathological and cytogenetic parameters. Extracts mixture under study offered protection from cisplatin induced kidney dysfunction via antioxidant and possibly anti-inflammatory actions.
Słowa kluczowe
Opis fizyczny
  • Food Sciences and Nutrition Department, National Research Centre, Dokki, Cairo, Egypt
  • Food Sciences and Nutrition Department, National Research Centre, Dokki, Cairo, Egypt
  • Food Sciences and Nutrition Department, National Research Centre, Dokki, Cairo, Egypt
  • Pathology Department, National Research Centre, Dokki, Cairo, Egypt
  • Cytogenetic Department, National Research Centre, Dokki, Cairo, Egypt
  • 1. Aebi H.E., Catalase in vitro. Methods Enzymol., 1984, 105, 121–126.
  • 2. Ajiboye T.O., Salawu N.A., Yakubu M.T., Oladiji A.T., Akanji M.A., Okogun J.I., Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract. Drug Chem. Toxicol., 2011, 34, 109–115.
  • 3. Ajith T.A., Usha S., Nivitha V., Ascorbic acid and α-tocopherol protect anticancer drug cisplatin induced nephrotoxicity in mice. a comparative study. Clin. Chim. Acta, 2007, 375, 82–86.
  • 4. Ali B.H., Al-Moundhri M.S., Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem. Toxicol., 2006, 44, 1173–1183.
  • 5. Al-Okbi S.Y., Mohamed D.A., Donya S.M., Abd El Khalek A.B., Role of Bifidobacterium bifidum and plant food extracts in improving microflora and biochemical and cytogenetic parameters in adjuvant arthritis. Grasas y Aceites, 2011, 62, 308–320.
  • 6. AOAC. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists International, Arlington, Virginia, USA, 2000.
  • 7. Arany I., Safirstein R.L., Cisplatin nephrotoxicity. Semin. Nephrol., 2003, 23, 460–464.
  • 8. Atessahin A., Yilmaz S., Karahan I., Ceribasi A.O., Karaoglu A., Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology, 2005, 212, 116–123.
  • 9. Brevik A., Gaivão I., Medin T., Jørgenesen A., Piasek A., Elilasson J., Karlsen A., Blomhoff R., Veggan T., Duttaroy A.K., Collins A.R., Supplementation of a western diet with golden kiwifruits (Actinidia chinensis var.’Hort 16A’) effects on biomarkers of oxidation damage and antioxidant protection. Nutr. J., 2011, 10, 54.
  • 10. Briggs G.M., Williams M.A., A new mineral mixture for experimental rat diets and evaluation of other mineral mixtures. Fed. Proc., 1963, 22, 261–266.
  • 11. Celik I., Isik I., Determination of chemopreventive role of Foeniculum vulgare and Salvia officinalis infusion on trichloroacetic acid-induced increased serum marker enzymes lipid peroxidation antioxidative defense systems in rats. Nat. Prod. Res., 2008, 22, 66–75.
  • 12. Chirino Y., Pedraza-Chaverri J., Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp. Toxicol. Pathol., 2009, 61, 223–242.
  • 13. Conklin K.A., Nicolson G.L., Molecular replacement in cancer therapy: reversing cancer metabolic and mitochondrial dysfunction, fatigue and the adverse effects of cancer therapy. Curr. Cancer Ther. Rev., 2008, 4, 66–76.
  • 14. Davis Ch.A., Nick H.S., Agarwal A., Manganese superoxide dismutase attenuates cisplatin-induced renal injury: importance of superoxide. J. Am. Soc. Nephrol., 2001, 12, 2683–2690.
  • 15. Davis J.M., Murphy E.A., Carmichael M.D., Effects of the dietary flavonoid quercetin upon performance and health. Curr. Sports Med. Rep., 2009, 8, 206–213.
  • 16. Deepa B., Anuradha C.V., Antioxidant potential of Coriandrum sativum L. seed extract. Indian J. Exp. Biol., 2011, 49, 30–38.
  • 17. Dolin T.D., Himmelfarb J., Drug-induced kidney disease. 2008, in: Pharmacotherapy, a Pathophysiologic Approach (ed. J.T. Dipiro). 7th ed., Mc Graw Hill Companies Inc., New York, pp. 795–810.
  • 18. Doumas B.T., Watson W.A., Biggs H.G., Albumin standards and the measurement of serum albumin with bromocresol green. Clin. Chem. Acta, 1971, 31, 87.
  • 19. Edwards A., Modeling transport in the kidney: investigating function and dysfunction. Am. J. Physiol. Renal. Physiol., 2010, 298, F475–F484.
  • 20. Ekor M., Emerole G.O., Farombi E.O., Phenolic extract of soybean (Glycine max) attenuates cisplatin-induced nephrotoxicity in rats. Food Chem. Toxicol., 2010, 48, 1005–1012.
  • 21. El Bardai S., Lyoussi B., Wibo M., Morel N., Pharmacological evidence of hypotensive activity of Marrubium vulgare and Foeniculum vulgare in spontaneously hypertensive rat. Clin. Exp. Hypertens., 2001, 23, 329–343.
  • 22. El-Ashmawy I.M., El-Nahas A.F., Salama O.M., Grape seed extract prevents gentamicin-induced nephrotoxicity and genotoxicity in bone marrow cells of mice. Basic Clin. Pharmacol. Toxicol., 2006, 99, 230–236.
  • 23. Fassett R.G., Venuthurupalli S.K., Gobe G.C., Coombes J.S., Cooper M.A., Hoy W.E., Biomarkers in chronic kidney disease: a review. Kidney Intern., 2011, 80, 806–821.
  • 24. Fawcett J.K., Scott J.E., A rapid and precise method for the determination of urea. J. Clin. Pathol., 1960, 13, 156–159.
  • 25. Ferguson L.R., Role of plant polyphenols in genomic stability. Mut. Res., 2001, SI, 475, 89–111.
  • 26. Frank T., Netzel G., Kammerer D.R., Carle R., Kler A., Kriesl E., Bitsch I., Bitsch R., Netzel M., Consumption of Hibiscus sabdariffa L. aqueous extract and its impact on systemic antioxidant potential in healthy subjects. J. Sci. Food Agric., 2012, 92, 2207–2218.
  • 27. Gris E.F., Mattivi F., Ferreira E.A., Vrhovsek U., Filho D.W., Pedrosa R.C., Bordignon-Luiz M.T., Stilbenes and tyrosol as target compounds in the assessment of antioxidant and hypolipidemic activity of Vitis vinifera red wines from Southern Brazil. J. Agric. Food Chem., 2011, 59, SI, 7954–7961.
  • 28. Guimarães R., Barros L., Carvalho A.M., Ferreira I.C., Infusions and decoctions of mixed herbs used in folk medicine: Synergism in antioxidant potential. Phytother Res., 2011, 25, 1209–1214.
  • 29. Gulec M., Iraz M., Yilmaz H.R., Ozyurt H., Temel I., The effects of Ginkgo biloba extract on tissue adenosine deaminase, xanthine oxidase, myeloperoxidase, malondialdehyde and nitric oxide in cisplatin-induced nephrotoxicity. Toxicol. Ind. Health,2006, 22, 125–130.
  • 30. Houot O., Interpretation of Clinical Laboratory Tests (eds. G. Siest, J. Henny, F. Schiele, D.S. Young). 1985, Biomedical Publications, p. 250.
  • 31. Ikari A., Nagatani Y., Tsukimoto M., Harada H., Miwa M., Takagi K., Sodium-dependent glucose transporter reduces peroxynitrite and cell injury caused by cisplatin in renal tubular epithelial cells. Biochim. Biophys. Acta, 2005, 1717, 109–117.
  • 32. Islam M.S., Yoshida H., Matsuki N., Ono K., Nagasaka R., Ushio H., Guo Y., Hiramatsu T., Hosoya T., Murata T., Hori M., Ozaki H., Antioxidant, free radical-scavenging, and NF-kappa B-inhibitory activities of phytosteryl ferulates: structure-activity studies. J. Pharmacol. Sci., 2009, 111, 328–337.
  • 33. Jabeen Q., Bashir S., Lyoussi B., Gilani A.H., Coriander fruit exhibits gut modulatory, blood pressure lowering and diuretic activities. J. Ethnopharmacol., 2009, 122, 123–30.
  • 34. Kadikoylu G., Bolaman Z., Demir S., Balkaya M., Akalin N., Enli Y., The effects of desferrioxamine on cisplatin-induced lipid peroxidation and the activities of antioxidant enzymes in rat kidneys. Hum. Exp. Toxicol., 2004, 23, 29–34.
  • 35. Kao E.S., Hsu J.D., Wang C.J., Yang S.H., Cheng S.Y., Lee H.J., Polyphenols extracted from Hibiscus sabdariffa L. inhibited lipopolysaccharide-induced inflammation by improving antioxidative conditions and regulating cyclooxygenase-2 expression. Biosci. Biotechnol. Biochem., 2009, 73, 385–90.
  • 36. Koracevic D., Koracevic G., Djordjevic V., Anderejevic S., Cosic V., Methods for the measurement of antioxidant activity in human fluids. J. Clin. Pathol., 2001, 54, 356–361.
  • 37. Li G., Chen Y., Hu H., Liu L., Hu X., Wang J., Shi W., Yin D., Association between age-related decline of kidney function and plasma malondialdehyde. Rejuvenation Res., 2012, 15, 257–264.
  • 38. Mansour M.A., Mostafa A.M., Nagi M.N., Khattab M.M., Al- Shabanah O.A., Protective effect of aminoguanidine against nephrotoxicity induced by cisplatin in normal rats. Comp. Biochem. Physiol. Toxicol. Pharmacol., 2002, 132, 123–128.
  • 39. Miller R.P., Tadagavadi R.K., Ramesh G., Reeves W.B., Mechanisms of cisplatin nephrotoxicity. Toxins, 2010, 2, 2490–2518.
  • 40. Morcos S.R., The effect of protein value of the diet on the neurological manifestations produced in rats by β-immodipropionitrile. Br. J. Nutr., 1967, 21, 269–274.
  • 41. Naughton C.A., Drug-induced nephrotoxicity. Am. Fam. Physician, 2008, 78, 743–750.
  • 42. Nicholas S.B., Yuan J., Aminzadeh A., Norris K.C., Crum A., Vaziri N.D., Salutary effects of a novel oxidative stressmodulator on adenine-induced chronic progressive tubulointerstitial nephropathy. Am. J. Transl. Res., 2012, 4, 257–268.
  • 43. Olatunji L.A., Usman T.O., Adebayo J.O., Olatunji V.A., Effects of aqueous extract of Hibiscus sabdariffa on renal Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in Wistar rats. Zhong Xi Yi Jie He Xue Bao., 2012, 10, 1049–1055.
  • 44. Pabla N., Dong Z., Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int., 2008, 73, 994–1007.
  • 45. Pratibha R., Sameer R., Rataboli P.V., Bhiwgade D.A., Dhume C.Y., Enzymatic studies of cisplatin induced oxidative stress in hepatic tissue of rats. Eur. J. Pharmacol., 2006, 532, 290–293.
  • 46. Rabik C.A., Dolan M.E., Molecular mechanisms and toxicity associated with platinating agents. Cancer Treat. Rev., 2007, 33 , 9–23.
  • 47. Ramesh G., Reeves W.B., P38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am. J. Physiol. Renal. Physiol., 2005, 289, F166-F174.
  • 48. Ramesh G., Reeves W.B., TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am. J. Physiol. Renal Physiol., 2003, 285, F610–F618.
  • 49. Rheinhold J.G., Total protein, Albumin and Globulin in Standard Methods of Clinical Chemistry (ed. D. Seligron). 1953. New York, Academic press, Inc. Vol. I., p. 88.
  • 50. Rosenbaum C.C., O’Mathúna D.P., Chavez M., Shields K., Antioxidants and antiinflammatory dietary supplements for osteoarthritis and rheumatoid arthritis. Altern. Ther. Health Med., 2010, 16, 32–40.
  • 51. Saha S.S., Ghosh M., Antioxidant effect of vegetable oils containing conjugated linolenic acid isomers against induced tissue lipid peroxidation and inflammation in rat model. Chem. Biol. Interact., 2011, 190, 109–120.
  • 52. Satoh K., Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta, 1978, 20, 37–43.
  • 53. Satoh M., Kashihara N., Fujimoto S., Horike H., Tokura T., Namikoshi T., Sasaki T., Makino H., A novel free radical scavenger, edarabone, protects against cisplatin-induced acute renal damage in vitro and in vivo. J. Pharmacol. Exp. Ther., 2003, 305, 1183–1190.
  • 54. Schrier R.W., Cancer therapy and renal injury. J. Clin. Invest., 2002, 110, 743–745.
  • 55. Shimeda Y., Hirotani Y., Akimoto Y.S., Ahindou K., Ijiri Y., Nishihori T., Tanaka K., Protective effects of capsaicin against cisplatin-induced nephrotoxicity in rats. Biol. Pharm. Bull., 2005, 28, 1635–1638.
  • 56. Singleton VL., Rossi JA., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965,16, 144–158.
  • 57. Stadtman E.R., Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Rad. Biol. Med., 1990, 9, 315–325.
  • 58. Tan Z., Shahidi F., Chemoenzymatic synthesis of phytosteryl ferulates and evaluation of their antioxidant activity. J Agric. Food Chem., 2011, 59, 12375–12383.
  • 59. Tikoo K., Bhatt D.K., Gaikawad A.B., Sharma V., Kabra D.G., Differential effects of tannic acid on cisplatin induced nephrotoxicity in rats. FEBS Lett., 2007, 581, 2027–2035.
  • 60. Visioli F., DeLaLastra C.A., Andres-Lacueva C., Aviram M., Cahau C., Cassano A., D’Archivio M., Faria A., Fave G., Fogliano V., Llorach R.,Vitaglione P., Zoratt M., Edeas M., Polyphenols and human health: a prospectus. Crit. Rev. Food Sci. Nutr., 2011, 51, 524–546.
  • 61. Wright C.I., Van-Buren L., Kroner C.I., Koning M.M., Herbal medicines as diuretics: a review of the scientific evidence. J. Ethnopharmacol., 2007, 114, 1–31.
  • 62. Wu T.T., Tsai C.W., Yao H.T., Lii C.K., Chen H.W., Wu Y.L., Chen P.Y., Liu K.L., Suppressive effects of extracts from the aerial part of Coriandrum sativum L. on LPS-induced inflammatory responses in murine RAW 264.7 macrophages. J. Sci. Food Agric., 2010, 90, 1846–1854.
  • 63. Wyrobek A.J., Bruce W.R., The induction of sperm-shape abnormalities in mice and humans. 1978, in: Chemical Mutagens: Principles and Methods for Their Detection (eds. A. Hollaender, F.J. de Serres). Vol. 5, Plenum Press, New York, pp. 255–285.
  • 64. Yalçin E., Oruç E., Cavuşoğlu K., Yapar K., Protective role of grape seed extract against doxorubicin-induced cardiotoxicity and genotoxicity in albino mice. J. Med. Food, 2010, 13, 917–25.
  • 65. Yilmaz H.R., Iraz M., Sogut S., Ozyurt Z.Y., Akyol O., Gergerlioglu S., The effects of erdosteine on the activities of some metabolic enzymes during cisplatin-induced nephrotoxicity in rats. Pharmacol. Res., 2004, 50, 287–290.
  • 66. Yosida T.H., Amano K., Autosomal polymorphism in laboratory bred and wild Norway rat, Rattus norvegicus found in Misima. Chromosoma, 1965, 16, 658–667.
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.