PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1991 | 36 | 1 |

Tytuł artykułu

Rates of species - level origination and extinction: Functions of age, diversity, and history

Treść / Zawartość

Warianty tytułu

PL
Tempo powstawania i wymierania gatunków jako funkcja długotrwałości gatunku oraz zróżnicowania historii paleosystemu

Języki publikacji

EN

Abstrakty

EN
Global-scale data on the Oligocene to Recent planktic foraminifers and coccoliths from the tropical Pacific and Atlantic Oceans are employed for quantitative testing of alternative models (Red Queen and Stationary Hypotheses) of the relationship between speciation rates, extinction rates, taxonomic diversity, abiotic events, and history of the paleosystem. The results demonstrate that although the Law of Constant Extinction is supported by the data, the theoretical implications are quite ambiguous because the two considered models appear as end members of a continuum.
PL
Empiryczne dane o stratygraficznym zasiągu planktonicznych otwornic i kokkolitów od oligocenu do holocenu na obszarze tropikalnego Pacyfiku i Atlantyku, pochodzące ze sprawozdań Deep Sea Drilling Project (tabela 1), poddane zostały precyzyjnej analizie statystycznej w celu przetestowania modelu Czerwonej Królowej i modelu Stacjonarnego ewolucji w systemie wielogatunkowym (por. Hoffman i Kitchell 1984, Stenseth i Maynard Smith 1984). Analizowano związki pomiędzy tempem powstawania i wymierania gatunków a długotrwałością gatunków oraz zróżnicowaniem taksonomicznym i historią paleosystemu (tabele 2—4; figury 1—9). Okazuje się, że co prawda prawo stałości tempa wymierania, które legło u podstaw modelu Czerwonej Królowej (Van Valen 1973), znajduje w tych danych mocne potwierdzenie empiryczne, jednak konsekwencje teoretyczne tego wyniku są niejednoznaczne, gdyż testowane modele nie stanowią dwóch wykluczających się stanów, lecz dwa skrajne ogniwa ciągłego spektrum możliwości.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

1

Opis fizyczny

p.39-67,fig.,ref.

Twórcy

  • Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109, USA
autor
  • Instytut Paleobiologii, Polska Akademia Nauk, Al.Zwirki i Wigury 93, 02-089 Warsaw, Poland

Bibliografia

  • BACKMAN, J. and SHACKLETON, N. J. 1983. Quantitative biochronology of Pliocene and early Pleistocene nannofossils from the Atlantic, Indian, and Pacific Oceans. — Mar. Micropaleont., 8, 141—170.
  • BARRON, J. A. and KELLER, G. 1982. Widespread Miocene deep-sea hiatuses: Coincidence with periods of global cooling. — Geology, 10, 577—581.
  • BECKMANN, J. P., BOLLI, H. M., PERCH-NIELSEN, K., PROTO DECIMA, F., SAUNDERS, J. B. and TOUMARKINE, M. 1981. Major calcareous nannofossil and foraminiferal events between the Middle Eocene and Early Miocene. — Palaeogeogr., Palaeoclimatol., Palaeoecol., 36, 155—190.
  • BENSON, R. H., CHAPMAN, R. E. and DECK, L. T. 1984. Paleoceanographic events and deep-sea ostracodes. — Science, 224, 1334—1336.
  • BERGGREN, W. A., KENT, D. V., FLYNN, J. and VAN COUVERING, J. A. 1985. Cenozoic geochronology. — Geol. Soc. Amer. Bull., 96, 1407—1418.
  • BIOLZI, M. 1983. The Oligocene/Miocene boundary in the Equatorial Atlantic DSDP Site 354. — Riv. Ital. Paleont., 88, 113—131.
  • BLOW, W. H. 1969. Late Middle Eocene to Recent planktonic foraminifer biostratigraphy.— In: Proc. 1st Plankt. Conference, Geneva, 199—422.
  • BOLLI, H. M. 1957а. Planktonie Foraminifera from the Oligocene-Miocene Cipero and Lengua Formations of Trinidad, B.W.I. — U.S. Natl. Mus. Bull., 215, 97—123.
  • BOLLI, H. M. 1957b. Planktonic Foraminifera from the Eocene Navet and San Fernando Formations of Trinidad, B.W.I. — U.S. Natl. Mus. Bull., 215, 155—172.
  • BOLLI, H. M. 1964. Observations on the stratigraphic distribution of some warm water planktonic Foraminifera in the young Miocene to Recent. — Ecl. Geol. Helvetiae, 57, 541—552.
  • BOLLI, H. M. 1966. Zonation of Cretaceous to Pliocene marine sediments based on planktonic Foraminifera. — Bol. Inf. Assoz. Venezuel. Geol. Min. Petrol., 9, 3—31.
  • BOLLI, H. M. 1972. The genus Globigerinatheka Bronnimann. — J. Foram. Res., 2, 109—136.
  • BRAMLETTE, M. N. and WILCOXON, J. A. 1967. Middle Tertiary calcareous nannoplankton of the Cipero section, Trinidad, W.I. — Tulane Stud. Geol., 5, 93—131.
  • BUKRY, D. 1980. Coccolith stratigraphy, tropical eastern Pacific Ocean, Deep Sea Drilling Project, Leg 54. — Init. Repts. DSDP 54, 535—543.
  • CHESSON, P. L. and CASE, T. J. 1986. Overview. Nonequilibrium community theories: Chance, variability, history, and coexistence. — In: J. M. DIAMOND and T. J. CASE (eds.), Community Ecology, 229—239. Harper & Row, New York.
  • CONROY, M. J. and NICHOLS, J. D. 1984. Testing for variation in taxonomic extinction probabilities: A suggested methodology and some results. — Paleobiology, 10, 328—337.
  • COOPER, W. S. 1984. Expected time to extinction and the concept of fundamental fitness. — J. Theor. Biol., 107, 603—629.
  • CORLISS, B. H., AUBRY, М.-P., BERGGREN, W. A., FENNER, J. M., KEIGWIN, L. D., and KELLER, G. 1984. The Eocene/Oligocene boundary event in the deep sea. — Science, 226, 806—810.
  • CRAVEN, P. and WAHBA, G. 1979. Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. — Numer. Math., 31, 377—403.
  • DARWIN, C. 1859. On the Origin of Species. — Murray, London.
  • DOUGLAS, R. G. and SAVIN, S. M. 1975a. Oxygen and carbon isotope analyses of Cretaceous and Tertiary Foraminifera from the central north Pacific. — Init. Repts. DSDP, 17, 591—606.
  • DOUGLAS, R. C. and SAVIN, S. 1975b. Oxygen and carbon isotope analyses of Tertiary and Cretaceous microfossils from Shatsky Rise and other sites in the north Pacific Ocean. — Init. Repts. DSDP, 32, 509—520.
  • ELLIS, С. H. 1982. Calcareous nannoplankton biostratigraphy — Deep Sea Drilling Project Leg 60. — Init. Repts. DSDP, 60, 507—535.
  • ENDLER, J. A. 1986. Natural Selection in the Wild. — Princeton University Press, Princeton.
  • FENSTER, E. J., SORHANNUS, U., BURCKLE, L. H. and HOFFMAN, A. 1989. Patterns of morphological change in the Neogene diatom Nitzschia jouseae Burckle. — Hist. Biol., 2, 197—212.
  • FLESSA, K. W. 1979. Extinction. — In: R. W. FAIRBRIDGE and D. JABLONSKI (eds.), The Encyclopedia of Paleontology, 300—305. Dowden, Hutchinson & Ross, Stroudsburg, PA.
  • GARTNER, S. 1967. Calcareous nannofossils from the Neogene of Trinidad, Jamaica and Gulf of Mexico. — Univ. Kansas Paleont. Contrib., 29, 1—7.
  • GOULD, S. J. and CALLOWAY, C. B. 1980. Clams and brachiopods — ships that pass in the night.—Paleobiology, 6, 383—396.
  • HOFFMAN, A. 1983. The Red Queen hypothesis: A decade of debate. — Zbl. Geol. Palaeont., 2, 1983, 201—206.
  • HOFFMAN, A. and KITCHELL, J. A. 1984. Evolution in a pelagic planktic system: A paleobiologic test of models of multispecies evolution. — Paleobiology, 10, 9—33.
  • JOHNSON, D. A. and NIGRINI, C. A. 1985. Synchronous and time-transgressive Neogene radiolarian datum levels in the Equatorial Indian and Pacific Oceans. — Mar. Micropaleont., 9, 489—523.
  • KEIGWIN, L. D. 1976. Cenozoic planktonic foraminiteral biostratigraphy and paleoceanography of the Panama Basin. — Micropaleont., 22, 419—422.
  • KEIGWIN, L. D. 1980. Paleoceanographic change in the Pacific at the Eocene-Oligocene boundary. — Nature, 282, 722—725.
  • KEIGWIN, L. D. and CORLISS, B. H. 1986. Stable isotopes in the late Middle Eocene to Oligocene Foraminifera. — Geol. Soc. Amer. Bull., 97, 335—345.
  • KEIGWIN, L. D. and KELLER, G. 1984. Middle Oligocene cooling from equatorial Pacific DSDP Site 77B. — Geology, 12, 16—19.
  • KELLER, G. 1981a. The genus Globorotalia in the Early Miocene of the equatorial and northwestern Pacific. — J. Foram. Res., 11, 118—132.
  • KELLER, G. 1981b. Origin and evolution of the genus Globigerinoides in the Early Miocene of the northwestern Pacific, Site 292. — Micropaleont., 27, 293—304.
  • KELLER, G., BARRON, J. A. and BURCKLE, LH. 1982. North Pacific Late Miocene correlations using microfossils, stable isotopes, percent CaCO₃ and magnetostratigraphy. — Mar. Micropaleont., 7, 327—357.
  • KENNETT, J. P. 1983. Paleo-oceanography: Global ocean evolution. — Rev. Geophys. Space Phys., 21, 1258—1274.
  • KENNETT, J. P. and SHACKLETON, N. J. 1976. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago. — Nature, 260, 513—515.
  • KENNETT, J. P. and SRINIVASAN, M. S. 1983. Neogene Planktonic Foraminifera: A Phylogenetic Atlas. — Hutchinson & Ross, Stroudsburg, PA.
  • KENT, D. V. and SPARIOSU, D. J. 1983. High-resolution magnetostratigraphy of Caribbean Plio-Pleistocene deep-sea sediments. — Palaeogeogr., Palaeoclimatol., Palaeoecol., 42, 47—64.
  • KITCHELL, J. A. 1987. The temporal distribution of evolutionary and migrational events in pelagic systems: Episodic or continuous? — Paleoceanography, 2, 473—488.
  • KNOLL, A. H. 1986. Patterns of change in plant communities through geological time. — In: J. M. DIAMOND and T. J. CASE (eds.), Community Ecology, 126—141. Harper & Row, New York.
  • LYELL, C. 1832. Principles of Geology. — Murray, London.
  • MALMGREN, B. A., BERGGREN, W. A. and LOHMANN, G. P. 1983. Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic Foraminifera. — Paleobiology, 9, 377—389.
  • MARTINI, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. — In: Proc. 2nd Plankt. Conference, Rome, 739—785.
  • MARTINI, E. 1981. Oligocene to Recent calcareous nannoplankton from Philippine Sea, Deep Sea Drilling Project Leg 59. — Init. Repts. DSDP, 59, 547—565.
  • MAYNARD SMITH, J. 1982. Evolution — sudden or gradual? — In: J. MAYNARD SMITH (ed.), Evolution Now, 125—128. Freeman, San Francisco.
  • MILLER, K. G. and FAIRBANKS, R. G. 1985a. Oligocene to Miocene carbon isotope cycles and abyssal circulation changes. — Amer. Geophys. Union Monogr., 32, 469—486.
  • MILLER, K. G. and FAIRBANKS, R. G. 1985b. Cainozoic delta 18-O record of climate and sea level. — S. Afr. J. Sci., 81, 248—249.
  • MILLER, K. G., FAIRBANKS, R. G. and MOUNTAIN, G. S. 1987. Tertiary oxygen isotope synthesis and sea level history. — Paleoceanography, 2, 1—20.
  • MOORE, T. C., VAN ANDEL, T. H., SANCETTA, C. and PISIAS, N. 1978. Cenozoic hiatuses in pelagic sediments. — Micropaleont., 24, 113—138.
  • NICHOLS, J. D. and POLLOCK, K. H. 1983. Estimating taxonomic diversity, extinction rates, and speciation rates from fossil data using capture-recapture models. — Paleobiology, 11, 389—405.
  • PROTHERO, D. R. 1985. North American mammalian diversity and Eocene-Oligocene extinctions. — Paleobiology, 9, 150—163.
  • QUINN, J. F. and DUNHAM, A. E. 1983. On hypothesis testing in ecology and evolution. — Amer. Natur., 122, 602—617.
  • RAUP, D. M. 1975. Taxonomic survivorship curves and Van Valen’s Law. — Paleobiology, 1, 82—96.
  • RAUP, D. M. 1976a. Species diversity in the Phanerozoic: A tabulation. — Paleobiology, 2, 279—288.
  • RAUP, D. M. 1976b. Species diversity in the Phanerozoic: An interpretation. — Paleobiology, 2, 289—297.
  • RAUP, D. M. 1986. Biological extinction in Earth history. — Science, 231, 1528—1533.
  • RYAN, W. B. F., CITA, M. B., RAWSON, M. D., BURCKLE, L. H. and SAITO, T. 1974. A paleomagnetic assignment of Neogene Stage boundaries and the development of isochronous datum planes between the Mediterranean, the Pacific and Indian Oceans in order to investigate the response of the world ocean to the Messinian ‘salinity crisis’. — Riv. Ital. Paleont., 80, 631—688.
  • SAITO, T. 1977. Late Cenozoic planktonic foraminiferal datum levels: The present state of knowledge toward accomplishing Pan-Pacific correlation. — In: Proc. 1st Intern. Congr. Pacific Neogene Stratigr., Tokyo, 61—80.
  • SAVIN, S. M., DOUGLAS, R. G., KELLER, G., KILLINGSLEY, J. S., SHAUGH-NESSY, L., SOMMER, M. A., VINCENT, E. and WOODRUFF, F. 1981. Miocene benthic foraminiferal isotope records: A synthesis. — Mar. Micropaleont., 6, 423—450.
  • SEPKOSKI, J. J. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. — Paleobiology, 4, 223—251.
  • SEPKOSKI, J. J. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. — Paleobiology, 5, 222—251.
  • SEPKOSKI, J. J. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. — Paleobiology, 10, 246—267.
  • SHACKLETON, N. J. 1985. The ocean carbon isotope record: Implications for the history of global carbon cycling. — Amer. Geophys. Union Monogr., 32, 412—417.
  • SIMPSON, G. G. 1944. Tempo and Mode in Evolution. — Columbia University Press, New York.
  • SIMPSON, G. G. 1953. The Major Features of Evolution. — Columbia University Press, New York.
  • SNYDER, S. W., MULLER, C. and MILLER, K. G. 1984. Biostratigraphy and paleoceanography across the Eocene/Oligocene boundary at Deep Sea Drilling Project Site 549. — Geology, 12, 112—115.
  • SOBER, E. 1984. The Nature of Selection. — MIT Press, Cambridge, MA.
  • SORHANNUS, U., FENSTER, E. J., BURCKLE, L. H. and HOFFMAN, A. 1988. Cladogenetic and anagenetic changes in the morphology of Rhizosolenia praebergonii Mukhina. — Hist. Biol., 1, 185—206.
  • SRINIVASAN, M. S. and KENNETT, J. P. 1981a. A review of Neogene planktonic foraminiferal biostratigraphy: Applications in the Equatorial and South Pacific. — Soc. Econ. Paleont. Mineral. Spec. Publ., 32, 395—432.
  • SRINIVASAN, M. S. and KENNETT, J. P. 1981b. Neogene planktonic foraminiferal biostratigraphy and evolution: Equatorial to subantarctic South Pacific. — Mar. Micropaleont., 6, 499—533.
  • STAINFORTH, R. M., LAMB, J. L., LUTERBACHER, H.-P., BEARD, J. H. and JEFFORDS, R. M. 1975. Cenozoic planktonic foraminiferal zonation and characteristics of index forms. — Univ. Kansas Paleont. Contrib., 62, 1—425.
  • STANLEY, S. M. 1979. Macroevolution — Pattern and Process. — Freeman, San Francisco.
  • STENSETH, N. C. and MAYNARD SMITH, J. 1984. Coevolution in ecosystems: Red Queen evolution or stasis? — Evolution, 38, 870—880.
  • THUNELL, R. C. 1981. Late Miocene-Early Pliocene planktonic foraminiferal biostratigraphy and paleoceanography of low-latitude marine sequences. — Mar. Micropaleont., 6, 71—90.
  • VALENTINE, J. W. (Ed.) 1985. Phanerozoic Diversity Patterns: Profiles in Macroevolution. — Princeton University Press, Princeton.
  • VAN ANDEL, T. H., HEATH, G. R. and MOORE, T. C. 1975. Cenozoic history and paleoceanography of the central equatorial Pacific: A regional synthesis of Deep Sea Drilling Project data. — Geol. Soc. Amer. Mem., 143, 1—134.
  • VAN COUVERING, J. A., AUBRY, М.-P., BERGGREN, W. A., BUJAK, J. P., NAESER, C. W. and WIESER, T. 1981. The terminal Eocene event and the Polish connection. — Palaeogeogr., Palaeoclimatol., Palaeoecol., 36, 321—362.
  • VAN VALEN, L. M. 1973. A new evolutionary law. — Evol. Theory, 1, 1—30.
  • VAN VALEN, L. M. 1984. A resetting of Phanerozoic community evolution. — Nature, 307, 50—52.
  • WARD, P. D. and SIGNOR, P. W. 1983. Evolutionary tempo in Jurassic and Cretaceous ammonites. — Paleobiology, 9, 183—198.
  • WEI, K.-Y. and KENNETT, J. P. 1986. Taxonomic evolution of Neogene planktonic Foraminifera and paleoceanographic relations. — Paleoceanography, 1, 67—84.
  • WIMSATT, W. C. 1987. False models as means to truer theories. — In: M. H. NITECKI and A. HOFFMAN (eds.), Neutral Models in Biology, 23—55. Oxford University Press, New York.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-89fb3e63-ffa8-44f1-9c05-0c719dea6819
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.