PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 70 | 4 |

Tytuł artykułu

Aboveground dry biomass partitioning and nitrogen accumulation in early maturing soybean ‘Merlin’

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Udział części roślin oraz gromadzenie azotu w plonie nadziemnej biomasy wcześnie plonującej soi odmiany ‘Merlin’

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to determine the biomass and nitrogen accumulation in early maturing soybean plants experiencing contrasting weather conditions. Soybean (Glycine max) is a species of agricultural crop plant that is widely described in scientific publications. During 2014–2016, a field experiment with early maturing soybean ‘Merlin’ was carried out at Grodziec Śląski, Poland (49°48'01" N, 18°52'04" E). Results showed that the morphological traits of the plants, the yield of individual plants, and the soybean crop were all closely related to the climatic conditions. A high amount of precipitation stimulated seed development, resulting in a high production potential. The harvest index calculated for soybean ‘Merlin’ was high and exceeded 0.5 g g−1. The nitrogen content of the aboveground biomass increased during ontogenesis. The maximum yield of dry matter was noted at the green maturity phase, which subsequently decreased at the full maturity phase because of the loss of the leaf fraction. The variation in the effectiveness of nitrogen accumulation in seeds between 2015 and 2016 was 30%. The nitrogen harvest index values were high in each year of the experiment and exceeded 0.92 g−1. For the production of 1 ton of seeds with an adequate amount of soybean straw, plants needed, on average, 68 kg of nitrogen.
PL
Celem badań było określenie akumulacji biomasy i azotu we wcześnie dojrzewającej odmianie soi [Glycine max (L.) Merr.] w zmiennych warunkach pogodowych. W latach 2014–2016 w Grodźcu Śląskim (49°48'01" N, 18°52'04" E) przeprowadzono eksperyment polowy z wcześnie dojrzewającą odmianą soi ‘Merlin’. Wykazano, że cechy morfologiczne roślin soi oraz plonowanie były ściśle związane z warunkami klimatycznymi. Wysoka ilość opadów stymulowała rozwój nasion, dając w rezultacie wysoki potencjał produkcyjny. Indeks żniwny (HI) obliczony dla odmiany ‘Merlin’ był wysoki i przekraczał 0.5 g g−1. Zawartość azotu w nadziemnej biomasie wzrastała wraz z rozwojem generatywnym roślin. Maksymalną wydajność suchej masy odnotowano w początkowej fazie dojrzewania. W fazie pełnej dojrzałości wydajność suchej masy spadła, z powodu utraty frakcji liści. Zróżnicowanie w efektywności akumulacji azotu w nasionach w latach 2015–2016 wyniosło 30%. Wartości indeksu żniwnego azotu (NHI) były wysokie w każdym roku doświadczenia i przekraczały 0.92 g g−1. Do produkcji 1 tony nasion z odpowiednią ilością słomy rośliny potrzebowały średnio 68 kg azotu.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

70

Numer

4

Opis fizyczny

Article 1728 [13p.], fig.,ref.

Twórcy

Bibliografia

  • 1. Liu XB, Sheng CL, Herbert SJ, Chin KL, Qi Y. Mapping soybean physiology research based on the Web of Science. International Journal of Plant Production. 2015;9(4):561–580.
  • 2. Herridge DF, Peoples MB, Boddey RM. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil. 2008;311(1):1–18. https://doi.org/10.1007/s11104-008-9668-3
  • 3. Fenta BA, Beebe SE, Kunert KJ, Burridge JD, Barlow KM, Lynch JP, et al. Field phenotyping of soybean roots for drought stress tolerance. Agronomy. 2014;4(3):418–435. https://doi.org/10.3390/agronomy4030418
  • 4. Kaczmarek M, Pawlak M. Soja – roślina uprawna z perspektywami [Internet]. 2017 [cited 2017 Dec 1]. Available from: http://akord.agro.pl/produkcja-roslinna/doradztw-o-technologie-uprawy/soja-nie-gmo
  • 5. Eapen S. Advances in development of transgenic pulse crops. Biotechnol Adv. 2008;26(2):162–168. https://doi.org/10.1016/j.biotechadv.2007.11.001
  • 6. Foreign Agricultural Service [Internet]. World agricultural production. 2017 [cited 2017 Dec 1]. Available from: http://www.pecad.fas.usda.gov
  • 7. Pyziak K. Soja coraz lepiej rozpoznana. In: Czubiński T, editor. Strączkowe w mistrzowskiej uprawie. Poznań: Polskie Wydawnictwo Rolnicze; 2013. p. 30–33. (Top Agrar).
  • 8. Falloon P, Betts R. Climate impacts on European agriculture and water management in the context of adaptation and mitigation – the importance of an integrated approach. Sci Total Environ. 2010;408(23):5667–5687. https://doi.org/10.1016/j.scitotenv.2009.05.002
  • 9. Rosenzweig C, Parry ML. Potential impact of climate change on world food supply. Nature. 1994;367:133–138. https://doi.org/10.1038/367133a0
  • 10. Lobell DB, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science. 2011;333:616–620. https://doi.org/10.1126/science.1204531
  • 11. Bury M, Nawracała J. Wstępna ocena potencjału plonowania odmian soi (Glycine max L. Merrill) uprawianych w rejonie Szczecina. Rośliny Oleiste – Oilseed Crops. 2004;25(2):415–422.
  • 12. Śliwa J, Zając T, Oleksy A, Klimek-Kopyra A, Lorenc-Kozik A, Kulig B. Comparison of the development and productivity of soybean (Glycine max (L.) MERR.) cultivated in western Poland. Acta Scientiarum Polonorum. Agricultura. 2015;14(4):81–95.
  • 13. Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crops Res. 2008;108(1):1–13. https://doi.org/10.1016/j.fcr.2008.03.001
  • 14. Meier U, editor. Growth stages of mono- and dicotyledonous plants. BBCH monograph. 2nd ed. Bonn: Federal Biological Research Centre for Agriculture and Forestry; 2001.
  • 15. Donald CM, Hamblin J. The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Advances in Agronomy. 1976;28:361–405. https://doi.org/10.1016/S0065-2113(08)60559-3
  • 16. Salado-Navarro LR, Hinson K, Sinclair TR. Nitrogen partitioning and dry matter allocation in soybeans with different seed protein concentration. Crop Sci. 1985;25:451–455. https://doi.org/10.2135/cropsci1985.0011183X002500030006x
  • 17. Brevedan RE, Egli DB. Short periods of water stress during seed filling, leaf senescence, and yield of soybean. Crop Sci. 2003;43:2083–2088. https://doi.org/10.2135/cropsci2003.2083
  • 18. Cregan PB, Yaklich RW. Dry matter and nitrogen accumulation and partitioning in selected soybean genotypes of different derivation. Theor Appl Genet. 1986;72:782–786. https://doi.org/10.1007/BF00266545
  • 19. Board JE, Maricherla D. Explanations for decreased harvest index with increased yield in soybean. Crop Sci. 2008;48:1995–2002. https://doi.org/10.2135/cropsci2008.02.0098
  • 20. Barrett CB. Measuring food insecurity. Science. 2010;327(5967):825–828. https://doi.org/10.1126/science.1182768
  • 21. Falkenmark M, Molden D. Wake up to realities of river basin closure. Water Resources Development. 2008;24(2):201–215. https://doi.org/10.1080/07900620701723570
  • 22. Piesse J, Thirtle C. Three bubbles and a panic: an explanatory review of recent food commodity price events. Food Policy. 2009;34(2):119–129. https://doi.org/10.1016/j.foodpol.2009.01.001
  • 23. Rosegrant MW, Cai X. Water scarcity and food security: alternative futures for the 21st century. Journal of Water Science and Technology. 2000;43(4):61–70.
  • 24. Hanjra MA, Qureshi ME. Global water crisis and future security in an era of climate change. Food Policy. 2010;35:365–377. https://doi.org/10.1016/j.foodpol.2010.05.006
  • 25. Fedoroff, NV, Battisti DS, Beachy RN, Cooper PJM, Fischhoff DA, Hodges CN, et al. Radically rethinking agriculture for the 21st century. Science. 2010;327(5967):833–834. https://doi.org/10.1126/science.1186834
  • 26. Mi N, Zhang YS, Ji RP, Cai F, Zhang SJ, Zhao XL. Effects of climate change on water use efficiency in rain-fed plants. International Journal of Plant Production. 2012;6(4):513–534. https://doi.org/10.22069/ijpp.2012.763
  • 27. Parry M, Rosenzweig C, Iglesias A, Fischer G, Livermore M. Climate change and world food security: a new assessment. Glob Environ Change. 1999;9:51–67. https://doi.org/10.1016/S0959-3780(99)00018-7
  • 28. Challinor AJ, Wheeler TR. Crop yield reduction in the tropics under climate change: processes and uncertainties. Agric For Meteorol. 2008;148:343–356. https://doi.org/10.1016/j.agrformet.2007.09.015
  • 29. Vesselin A, Eitzinger J, Cajic V, Oberfoster M. Potential impact of climate change on selected agricultural crops in north-eastern Austria. Glob Chang Biol. 2002.8:372–389. https://doi.org/10.1046/j.1354-1013.2002.00484.x
  • 30. Liu B, Liu XB, Wang C, Li YS, Jin J, Herbert SJ. Soybean yield and yield component distribution across the main axis in response to light enrichment and shading under different densities. Plant Soil Environ. 2010;56:384–392.
  • 31. Purcell LC, Serraj R, Sinclair TR, De A. Soybean N2 fixation estimates, ureide concentration, and yield responses to drought. Crop Sci. 2004;44:484–492. https://doi.org/10.2135/cropsci2004.4840
  • 32. Shiraiwa T, Hashikawa U. Accumulation and partitioning of nitrogen during seed filing in old and modern soybean cultivars in relation to seed production. Jpn J Crop Sci. 1995;64(4):754–759. https://doi.org/10.1626/jcs.64.754
  • 33. Mastrodomenico AT, Purcell LC. Soybean nitrogen fixation and nitrogen remobilization during reproductive development. Crop Sci. 2012;52:1281–1289. https://doi.org/10.2135/cropsci2011.08.0414
  • 34. Araujo AP, Teixeira MG. Nitrogen and phosphorus harvest indices of common bean cultivars: implications for yield quantity and quality. Plant Soil. 2003;257:425–433. https://doi.org/10.1023/A:1027353822088
  • 35. Vollmann J, Fritz CN, Wagentrist H, Ruckenbauer P. Environmental and genetic variation of soybean seed protein content under Central European growing conditions. J Sci Food Agric. 2000;80:1300–1306. https://doi.org/10.1002/1097-0010(200007)80:9<1300::AID-JSFA640>3.0.CO;2-I
  • 36. Salvagiotti F, Specht JE, Cassman KG, Walters DT, Weiss A, Dobermann A. Growth and nitrogen fixation in high-yielding soybean: impact of nitrogen fertilization. Agron J. 2009;101:958–970. https://doi.org/10.2134/agronj2008.0173x
  • 37. Harper JE. Nitrogen metabolism. In: Wilcox JR, editor. Soybeans: improvement, production, and uses. 2nd ed. Madison, WI: American Society of Agronomy; 1987. p.497–533. (Agronomy; vol 16).
  • 38. Sanginga N, Dashiell K, Okogun JA, Thottappilly G. Nitrogen fixation and N contribution by promiscuous modulating soybeans in the southern Guinea savanna of Nigeria. Plant Soil. 1987;195:257–266. https://doi.org/10.1023/A:1004207530131
  • 39. Watson CA, Reckling M, Preissel S, Bachinger J, Bergkvist G, Kuhlman T, et al. Grain legume production and use in European agricultural systems. Advances in Agronomy. 2017;235–303. https://doi.org/10.1016/bs.agron.2017.03.003

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-89d2e535-8691-4e43-830e-a11032be6de3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.