PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 30 | 6 |

Tytuł artykułu

Effects of root zone temperature and paraquant in the induction of oxidative stress in Trichosanthes cucumerina L.

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We investigated the influence of root zone temperature (RZT) and the aerial application of paraquat on stress defence mechanisms of Trichosanthes cucumerina L. To achieve this objective, T. cucumerina cv Green was grown with roots at 25 and 30℃ root zone temperature and maintained at 20 ± 1℃ air temperature in a growth chamber. These RZT and air temperature had earlier been shown to favor growth and fruit production in T. cucumerina. Plants at each RZT were subjected to paraquat treatment (+P) and without paraquat treatment (-P). Paraquat (0.2 mmol/L) was applied as aerial spray. Results showed that the individual main effects of RZT and paraquat treatments significantly affected the chlorophyll fluorescence and gas exchange parameters, while the interaction of both treatments had no significant effect. Results showed that the total phenolics and ascorbic acid contents of T. cucumerina at 30℃ were significantly higher than at 25℃. The T. cucumerina plants in +P treatment recorded significantly lower maximum photochemical efficiency (Fv/Fm), net photosynthesis (A), transpiration rate (E), intercellular CO2 concentration (Ci) and stomatal conductance (g1) compared to untreated plants. Also, plants raised at 30℃ recorded significantly higher Fv/Fm, A, E, Ci and g1 compared to plants raised at 25℃. Plants that were sampled at 48 h after paraquat treatment recorded a higher degree of oxidative damage compared to those sampled at 24 h after treatment. We showed that the degree of damage suffered by T. cucumerina, when treated with paraquat either at 25 or 30℃ RZT was similar at 48 h after treatment. We concluded that either at 25 or 30℃, exposure of T. cucumerina to paraquat would impose the same degree of oxidative damage.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

30

Numer

6

Opis fizyczny

p.873-879,fig.,ref.

Twórcy

  • Institut fur Nutzpflanzenwissenschaften und Ressourcenschutz (INRES), Gartenbauwissenschaft, University of Bonn, Auf dem Hugel 6, 53121 Bonn, Germany
autor
  • Institut fur Nutzpflanzenwissenschaften und Ressourcenschutz (INRES), Gartenbauwissenschaft, University of Bonn, Auf dem Hugel 6, 53121 Bonn, Germany
  • Institut fur Nutzpflanzenwissenschaften und Ressourcenschutz (INRES), Gartenbauwissenschaft, University of Bonn, Auf dem Hugel 6, 53121 Bonn, Germany

Bibliografia

  • Adebooye OC, Oloyede FM, Opabode JT, Onagoruwa OO (2005) Fruit characteristics and nutrient composition of three Nigerian landrace morphotypes of snake tomato (Trichosanthes cucumerina L.). J Veg Sci 11:5–16
  • Adebooye OC, Noga G, Lankes C (2007) Root zone temperature affects emergence and growth traits of Snake Tomato (Trichosanthes cucumerina L.). Eur J Hortic Sci (Germany), Submitted
  • Allen DJ, Ort DR (2001) Impact of chilling temperatures on photosynthesis in warm climate plants. Trends Plant Sci 6:36–42
  • Armond PA, Bjorkman O, Staehelin LA (1980) Dissociation of supramolecular complexes in chloroplast membranes—a manifestation of heat damage to the photosynthetic apparatus. Biochim Biophys Acta 601:433–442
  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–287
  • Baur JR, Bovey RW, Baur PS, El-Seifydr Zenab (1969) Effects of paraquat on the ultrastructure of mesquite mesophyll cells. Weed Res 9(2):81–85
  • Berova M, Zlatev Z, Stoeva N (2002) Effect of paclobutrazol on wheat seedlings under low temperature stress. Bulg J Plant Physiol 28:75–84
  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543
  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504
  • Boywer JR, Camilleri P (1987) Chemistry and biochemistry of PS I herbicides. In: Hutson DH, Roberts TR (eds). Herbicides Vol 5:105–145
  • Del Rio LA, Sandalio LM, Palma JM, Bueno P, Corpas FJ (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radiat Biol Med 13:557–580
  • Dodge A (1994) Herbicide action and effects on detoxification processes. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC, Boca Raton, pp 219–236
  • Förschler A, Schmitz-Eiberger M, Noga G (2003) Reduction of UV-B injury on Phaseolus vulgaris leaves and Malus domestica fruits by application of protecting agents. J Appl Bot 77:75–81
  • CH, Descourvie‘res P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ 17:507–523
  • Fracheboud Y, Haldimann P, Leipner J, Stamp P (1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 50:1533–1540
  • Friso G, Barbato R, Giacometti GM, Barber J (1994) Degradation of D2 protein due to UV-B irradiation of the reaction-center of photosystem-II. FEBS Lett 339:217–221
  • Genty B, Harbnson J, Briantais JM, Baker NR (1990) The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of PS II photochemistry in leaves. Photosynth Res 25:249–257
  • Hausladen A, Alscher R (1994) Cold-hardiness specific glutathione reductase isozymes in red spruce. Thermal dependence of kinetic parameters and possible regulatory mechanisms. Plant Physiol 105:215–223
  • Havaux M (1993) Characterisation of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci 94:19–33
  • Huner N, Williams J, Maissan E, Myscich E, Krol M, Laroche A, Singh J (1989) Low temperature-induced decrease in trans-D3-hexadecenoic acid content is correlated with freezing tolerance in cereals. Plant Physiol 89:144–150
  • Ikeda T, Matsumoto T, Noguchi M (1977) Effects of inorganic nitrogen sources and physical factors on the formation of ubiquinone by tobacco plant cells in suspension culture. Agric Biol Chem 41:1197–1201
  • Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M (1998) Oxdative damage in pea exposed to water deficit or paraquat. Plant Physiol 116:173–181
  • Katterman F (1990) Environmental injury to plants. Academic Press, New York
  • Laasch H (1987) Non-photochemical quenching of chlorophylla fluorescence in isolated chloroplasts under conditions of stressed photosynthesis. Planta 171:220–226
  • Melis A, Nemson JA, Harrison MA (1992) Damage to functional components and partial degradation of photosystem II reaction center proteins upon chloroplast exposure to ultraviolet-B radiation. Biochim Biophys Acta 100:312–320
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279
  • Okpodu CM, Alscher RG, Grabau EA, Cramer CL (1996) Physiological, biochemical and molecular effects of sulfur dioxide. J Plant Physiol 148:309–316
  • Sadasivam S, Manickam A (1992) Phenolics. In: Biochemical methods for agricultural sciences. Wiley Eastern Ltd., New Delhi, India, pp 187–188
  • Sage RF, Sharkey TD (1987) The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in field grown plants. Plant Physiol 84:658–664
  • Sahai OP, Shuler ML (2004) Environmental parameters influencing phenolics production by batch cultures of Nicotiana tabacum. Biotechnol Bioeng 26:111–120
  • Sassenrath GF, Ort DR, Portis AR Jr (1990) Impaired reductive activation of stromal bisphosphatases in tomato leaves following low-temperature exposure at high light. Arch Biochem Biophys 1:302–308
  • Schmitz-Eiberger M, Noga G (2001) Reduction of paraquat-induced oxidative stress in Phaseolus vulgaris and Malus domestica leaves by α-tocopherol. Planta 91:153–167
  • Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52:2207–2211
  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58
  • Syngenta Crop Protection AG (2005) Paraquat Fact Sheet. http.//www.paraquat.com Accessed 28 August 2007
  • Yu JQ, Zhou YH, Huang LF, Allen D (2002) Chill-induced inhibition of photosynthesis: genotypic variation within Cucumis sativus. Plant Cell Physiol 43:1182–1188
  • Zhao D, Reddy KR, Kakani VG, Mohammed AR, Read JJ, Gao W (2004) Leaf and canopy photosynthetic characteristics of cotton (Gossypium hirsutum) under elevated CO2 concentration and UV-B radiation. J Plant Physiol 161:581–590

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-89c75eef-bf0e-45db-9310-9606df82b76f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.