PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 4 |

Tytuł artykułu

Phytoplankton response to changes of physicochemical variables in Lake Nasser, Egypt

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Seasonal and spatial changes of phytoplankton in relation to environmental variables affecting the water quality were investigated along the main channel of Lake Nasser throughout 2013. In total, 104 phytoplankton species, belonging to 7 classes, were identified. Phytoplankton assemblages were dominated by Bacillariophyceae, Cyanophyceae and Chlorophyceae, whereas Dinophyceae, Euglenophyceae, Chrysophyceae and Cryptophyceae were infrequent. Cyclotella glomerata, C. ocellata and Aulacoseira granulata represented the most abundant species among Bacillariophyceae. Cyanophyceae was dominated by Planktolyngbya limnetica and Eucapsis minuta, and Chlorophyceae by Ankistrodesmus fusiformis and Staurastrum paradoxum. The water column was thermally stratified during summer, while being mixed throughout winter. Phytoplankton features and physicochemical variables were analyzed with the principal component analysis. Electrical conductivity and water temperature were the most common factors negatively controlling phytoplankton density. Phytoplankton density was positively associated with NO3, whereas it was negatively correlated with PO4 and HCO3. Cyanophyceae were strongly adapted to the environmental variables and NO2 was limiting their growth. Chlorophyceae were more dependent on PO4 than NO3. The vertical distribution of Chl a was associated with the summer thermal stratification and its concentration increased southwards. Chl a was affected by NO2 and linked to Chlorophyceae. The regional variations of phytoplankton reflected its response to varying environmental conditions. The annual average of the trophic state index indicated eutrophic waters of Lake Nasser.

Wydawca

-

Rocznik

Tom

20

Numer

4

Opis fizyczny

p.855-871,fig.,ref.

Twórcy

  • National Institute of Oceanography and Fisheries (NIOF), Inland Water and Aquaculture Branch, 101 El Kasr Aini St., Cairo, Egypt
  • Department of Hydrobiology, Inland Fisheries Institute, Olsztyn, Poland
  • National Institute of Oceanography and Fisheries (NIOF), Inland Water and Aquaculture Branch, 101 El Kasr Aini St., Cairo, Egypt
  • National Institute of Oceanography and Fisheries (NIOF), Inland Water and Aquaculture Branch, 101 El Kasr Aini St., Cairo, Egypt
autor
  • Faculty of Science, Menoufia University, Manoufia, Egypt

Bibliografia

  • Abd El-Karim M.S., Fishar M.R, Abd El-Gawad S.S. 2009. Epiphytic algae and macroinvertebrate communities of Myriophyllum spicatum Lemm. and their cascade in the littoral food web of Lake Nasser, Egypt. Global Vet., 3(3): 165-177.
  • Abd El-Monem A.M. 1995. Spatial distribution of phytoplankton and primary productivity in Lake Nasser. Ph.D. Thesis, University College for Girls, Ain Sham University. 1-161.
  • Abd El-Monem A.M. 2001. Radiophotosynthesis and assimilation rate of 14C uptake by phytoplankton in closed, turbid, saline lake (Lake Qarun, Egypt). Arab. J. Nucl. Sci. Appl., 34(2): 243-250.
  • Abd El-Monem A.M. 2008. Impact of summer thermal stratification on depth profile of phytoplankton productivity, biomass, density and photosynthetic capacity in Lake Nasser (Egypt). Jordan J. Biol. Sci., 1(4): 173-180.
  • Abou El-Kheir W.S., El-Shimy A., Abdel-Salam N. 2000. Seasonal variations in phytoplankton structure in some industrial polluted areas along Ismailia Canal Egypt. Al-Azhar Bull. of Science Proceeding of 5 Int. Sci. Conf. 25-27, March 2000, pp. 225-242.
  • American Public Health Association (APHA) 1996. Standard methods for the examination of wastewater. 18th edition. 1015 Fifteen street. NW. Washington, DC 20005.
  • Bishai H.M., Abdel Malek S.A., Khalil M.T. 2000. Lake Nasser. EEAA National Biodiversity Unit., 11: 500-577.
  • Bolalak J., Frankowski L. 2003. Selected nutrients and iron in interstitial, waters of the Estuary of Southern Baltic in relation to redox potential. J. Water Air Soil Pollut., 147: 39-50.
  • Brettum P., Andersen T. 2005. The use of phytoplankton as indicators of water quality. NIVA-report SNO 4818-2004: 1-197.
  • Carlson R.E. 1977. A trophic state index for lakes. Limnol. Oceanogr., 22(2): 361-369.
  • Chang F.H., Bradford J.M. 1985. Standing stocks and productivity of phytoplankton off Wasteland, New Zealand, June 1979. New Zeal. J. Mar. Fresh., 19: 193-211
  • Dayala V.T, Salas P.M., Sujatha C.H. 2014. Spatial and seasonal variations of phytoplankton species and their relationship to physicochemical variables in the Cochin estuarine waters, Southwest Coast of India. Ind. J. Geo-Marine Sci., 43(6): 937-947.
  • De Pauw N., Persoone G. 1992. Micro-algae for aquaculture. In: Micro-algal biotechnology. Borowitzka M.A., Borowitzka L.J. (Eds). Cambridge University press, Cambridge United Kingdom, 197-221.
  • El-Otify A.M. 2002. Relative abundance, species composition and spatial distribution of the phytoplankton during a significant flood period in Lake Nasser, Egypt. J. Biol. Sci., 5(10): 1114-1119.
  • Field C.B., Behrenfeld M.J., Randerson J.T., Falkowski P. 2007. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281: 237-240.
  • Friedland K.D., Stock C., Drinkwater K.F., Link J.S., Leaf R.T., et al. 2012. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE, 7(1): e28945. DOI:10.1371/journal.pone.0028945
  • Gaber M. A. 1982. Report on phytoplankton investigations in Lake Nasser during October 1979. Aswan Regional Planning Water Resources Department, 1-56.
  • Gharib S.M., Abd El-Halim A.M. 2006. Spatial variation of phytoplankton and some physic- chemical variables during the highest flood season in Lake Nasser (Egypt). Egypt. J. Aquatic Res., 32(1): 246-263.
  • Gorczyca B., London D. 2003. Characterization of particles in slow sand filtration at North Caribou water treatment plant. Water Qual. Res. J. Can., 38: 153-168.
  • Habib O.A., Aruga Y. 1996. Changes in the distribution of phytoplankton chlorophyll a in the main channel of the High Dam Lake, Egypt. Work Rep. Fish. Mang. Cent., Nasser Lake Develop., Aswan, 5: 133-147.
  • Habib O.A., Loriya T., Aruga Y. 1987. The distribution of chlorophyll a as index of primary productivity of phytoplankton in Khor El Ramla of the High Dam Lake, Egypt. J. Tokyo Univ. Fish., 76(2): 145-157.
  • Harper D.M. 1986. The effects of artificial enrichment up on the planktonic and benthic communities in a mesotrophic to hypertrophic loch series in lowland Scotland. Hydrobiologia, 137: 9-19.
  • Heinonen P., Ziglio G., Van der Beken A. 2000. Hydrological and limnological aspects of lake monitoring. Wiley, England, 46(48-49): 65-66.
  • Huot Y., Babin M., Bruyant F., Grob C., Twardowski M.S., Claustre H. 2007. Relationship between photosynthetic parameters and different proxies of phytoplankton biomass in the subtropical ocean. Biogeosciences, 4: 853–868.
  • Johnson E.A., An G.H. 1991. Astaxanthin from microbial sources. Crit. Rev. Biotechnol., 11: 297-326.
  • Lacerot G., Kruk C., Lürling M., Scheff er M. 2013. The role of subtropical zooplankton as gra zers of phytoplankton under different predation levels. Freshwater Biol., 58(3): 494-503. DOI: 10.1111/fwb.12075
  • Latif A.F.A. 1984. Lake Nasser. In: Status of African reservoirs fisheries. Kapetsky J.M., Petr T. (Eds.). CIFA Technical Paper, 10: 193-246.
  • Margalef R. 1974. A manual on method for measuring primary production in aquatic environments. Vollenweider R.A. (Ed.) IBP Handbood, 12: 7-14.
  • Melack J.M. 1976. Primary productivity in tropical lakes. Trans. Amer. Fish. Soc., 106(5): 575-580.
  • Mohamed I.O. 1993. Seasonal variations of chlorophyll a in the main channel of the High Dam Lake in 1986-1987. Work. Rep. Fish. Mang. Cent., High Dam Lake Develop. Auth., Aswan, 2: 133-154.
  • Mohamed I.O. 1996a. Seasonal changes of chlorophyll a concentration, water temperature and transparency in Khor El Ramla of Lake Nasser in 1990. Work. Rep. Fish. Mang. Cent, High Dam Lake Develop. Auth., Aswan, 5: 63-80.
  • Mohamed I.O. 1996b. Vertical distribution of chlorophyll a concentration, water temperature and transparency in main channel of Lake Nasser. Work. Rep. Fish. Mang. Cent, High Dam Lake Develop. Auth., Aswan, 5: 83-99.
  • Napiórkowska-Krzebietke A., Stawecki K., Pyka J.P., Hutorowicz J., Zdanowski B. 2013. Phytoplankton in relation to water quality of a mesotrophic lake. Pol. J. Environ. Stud., 22(3): 793-800.
  • Napiórkowska-Krzebietke A., Hutorowicz A. 2015. The physicochemical background for the development of potentially harmful cyanobacterium Gloeotrichia echinulata J. S. Smith ex Richt. J. Elem., 20(2): 363-376. DOI: 10.5601/jelem.2014.19.4.756
  • Ormerod D.J., Baral H.S., Brewin P.A., Buckton S.T., Juttner I., Rothfritz H., Suren A.M. 1994. River habitat surveys and biodiversity in the Nepal Himalaya. Freshwater Biol., 36: 421-430.
  • Oswald W.J. 1992. Micro-algae and waste-water treatment. In: Micro-algal biotechnology. Borowitzka M.A., Borowitzka L.J. (Eds.). Cambridge University press, Cambridge United Kingdom, pp. 305-328.
  • Reynolds C.S., Huszar V., Kruk C., Naseli-Flores L., Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res., 24: 417-428.
  • Roslin S.A. 2003. Seasonal variation in the protein content of marine algae in relation to environmental parameters in Arockia puram coast. Seaweed Res. Utiliz., 25: 77-86.
  • Sithik A.M., Thirumaran G., Arumugam R., Kannan R.R., Anantharaman P. 2009. Physico-chemical parameters of holy places Agnitheertham and Kothandaramar Temple, southeast coast of India. Am.-Eurasian J. Sci. Res., 4(2): 108-116.
  • Varadharajan D., Soundarapandian P. 2014. Effect of physico-chemical parameters on species biodiversity with special reference to the phytoplankton from Muthupettai, South East Coast of India. J. Earth Sci. Clim. Change, 5(5): 1-10. DOI: 10.4172/2157-7617.1000200
  • Vörös L., Padisák J. 1991. Phytoplankton biomass and chlorophyll-a in some shallow lakes in central Europe. Hydrobiologia, 215(2): 111-119.
  • Wilde E.W., Benemann J.R. 1993. Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv., 11(4): 781-812.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-89b04928-9f09-4d20-ad16-3bec72701146
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.